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Efficiency Testing of ANSI C Implementations of
Round 2 Candidate Algorithms for the

Advanced Encryption Standard

Lawrence E. Bassham III

Computer Security Division
Information Technology Laboratory

National Institute of Standards and Technology

1. Introduction

The evaluation criteria for the Advanced Encryption Standard (AES) Round2 candidate
algorithms, as specified in the “Request for Comments” [1], includes computational efficiency,
among other criteria.  Specifically, the “Call For AES Candidate Algorithms” [2] required both
Reference ANSI1 C code and Optimized ANSI C code, as well as Java2 code.  Additionally, a
“reference” hardware and software platform was specified for testing.  NIST performed testing
on this reference platform, as well as several others.  Candidate algorithms were tested for
computational efficiency using the Optimized ANSI C source code provided by the submitters.

This paper describes the testing methodology used in ANSI C efficiency testing, along with
observations regarding the resulting measurements.  The results of the measurements are
included followed by conclusions regarding which algorithms have the most consistent
performance across different platforms.  Some knowledge regarding compilation and processor
architectures is useful in understanding how the data was derived.  However, the raw data in the
document may be useful without necessarily understanding the derivation.

The testing described in this paper is similar to that done in Round 1.  The testing has obviously
been restricted to the five Round 2 candidates.  Additionally, Timing Tests for the Pentium based
platforms has been omitted in favor of Cycle Count testing (see Section 3).

2. Scope

Performance measurements were taken on multiple platforms.  These measurements were
analyzed to determine the general rankings of the candidate algorithms with respect to one
another.  NIST is not interested in the absolute value of the performance measurement, but in the
relative value of one algorithm’s speed when compared with the rest.  From an efficiency point
of view, NIST does not intend to rank one algorithm as “better” because it is relatively faster
                                                          
1 ANSI – American National Standards Institute
2 Certain commercial products are identified in this paper.  In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that
material identified is necessarily the best for the purpose.



than another algorithm by 0.5%.  However, if one algorithm was faster than another algorithm by
50%, then that would be considered a significant difference.  NIST is interested in finding the
consistent “top performers” on the test platforms by analyzing the performance data for the
algorithms and observing natural breaks.

3. Methodology

In the “Call for AES Candidate Algorithms” [2], NIST cited a specific hardware and software
platform as the “NIST Analysis Platform” (referred to in this document as the “reference
platform”) for testing candidate algorithms.  This platform consists of an IBM-compatible PC
with an Intel Pentium Pro Processor, 200 MHz-clock speed, 64MB RAM, running
Microsoft Windows 95, and the ANSI C compiler in the Borland C++ Development Suite
5.0.  Performance measurements were taken on this platform and a large number of additional
hardware and software platform combinations.  The platforms tested are detailed in Table 1.

Performance measurements were conducted in two different ways.  The first performance test
method determines the amount of time required to perform cryptographic operations (e.g., how
many bits of data can be encrypted in a second, or how many keys can be setup in a second).
This type of test is referred to as a “Timing Test” in this document.  The second performance
testing method counts the number of clock cycles required to perform cryptographic operations
(e.g., how many cycles are consumed in encrypting a block of data, or how many cycles are
consumed in setting up a key).  This type of test is referred to as a “Cycle Count Test” in this
document.  The Timing Tests utilized the clock() timing mechanism in the ANSI C library to
calculate the processor time consumed in the execution of the API call and underlying
cryptographic operation under test (i.e., makeKey(), blockEncrypt(), and
blockDecrypt()).  The time consumed to perform a particular operation was then used to
calculate the bits/second or keys/second speed measure.  The Cycle Count Tests counted the

Table 1: System Platforms (Hardware/Software) and
Compilers Used in Efficiency Testing

Processor/Hardware Operating System Compiler
Borland C++ 5.01 (cycles)Windows95
Visual C++ 6.0 (cycles)

200MHz Pentium Pro Processor,
64MB RAM

Linux GCC 2.8.1 (timing)
Borland C++ 5.01 (cycles)450MHz Pentium II Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles)
Borland C++ 5.01 (cycles)600MHz Pentium III Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles)
GCC 2.8.1Sun: 300MHz UltraSPARC-II w/

2MB Cache, 128 MB RAM
Solaris 2.7 (a 64 bit
operating system) Sun Workshop Compiler C 4.2

GCC 2.8.1Sun: 2*360MHz UltraSPARC-II w/
4MB Cache, 256 MB RAM

Solaris 2.7
Sun Workshop Compiler C 4.2
GCC 2.8.1Silicon Graphics: 2*300MHz

R12000 w/ 4MB Cache, 512 MB
RAM

IRIX64 6.5.4 (a 64 bit
operating system) MIPSpro C Compiler 7.30



actual clock cycles consumed in performing the operation under test (for more information on
counting clock cycles see [3]).  Because cycle counting utilizes assembly language code in the
testing program, interrupts could be turned off during testing3.  This results in a very accurate
measure of the performance of the API calls and the underlying cryptographic operations.
Additionally, cycle counting eliminates the variability of the processor speed.  The same number
of clock cycles are required to perform an operation on a 300 MHz Pentium II processor as on a
450 MHz Pentium II processor; there are simply more clock cycles in a second on a 450 MHz-
based system.  Cycle counting could only be performed on the Intel processor based systems.
This is the only processor used by NIST during Round 2 testing that provides access to a true
cycle counting mechanism.

3.1 Cycle Counting Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:
• The number of cycles needed to setup a key for encryption;
• The number of cycles needed to encrypt block(s) of data;
• The number of cycles needed to setup a key for decryption; and,
• The number of cycles needed to decrypt block(s) of data.

These values were measured by placing the CPUID and RDTSC assembly language instructions
around the NIST API.  These instructions were called twice before the cryptographic operation
to “flush” the instruction cache (see [3, §3.1]).  Additionally, the CLI and STI instructions were
used to disable interrupts before testing and enable after testing.  This eliminates extraneous
interrupts that would skew results. The test program generates 1000 sets of cycle count
information as described above for each key size. The values in each category are then sorted,
and the median value is determined.  A standard deviation is calculated for each test category.

Finally, the average of all values that fall within three standard deviations of the median is
determined.  This value is the reported average time to perform the specific operation (encrypt,
decrypt, or key setup) for a particular key size.  Values in this test program are calculated around
                                                          
3 Interrupts occur, for example, when the operating system needs to perform some action unrelated to the process
that is running.  If an interrupt were to occur during cycle count testing, the time spent performing the operating
system activity would be included in the time spent on the cryptographic operation.  This would lead to inflated and
erroneous values for the cycles necessary to perform the cryptographic operation.

makeKey();
cipherInit();
for (r=0; r<1000; r++) {

cli; /* Clear Interrupt Flag  */
cpuid; /* Clears instruction cache  */
rdtsc; /* Read Time Stamp Counter  */
save counter;
blockEncrypt(); /*  Perform operation being timed  */
cpuid;
rdtsc; /* Read Time Stamp Counter  */
subtract counter;
save counter
sti; /* Set Interrupt Flag  */
}

Fig. 1



the NIST API calls.  Results for the Cycle Counting Program can be found in Section 5.1.
Pseudo code for the generation of cycle counting information for the blockEncrypt()
operation is included in Figure 1.

The Cycle Counting Program was run several times with different lengths of data for encryption
and decryption to determine if size had any effect on the blockEncrypt() and
blockDecrypt() speeds.

3.2 Timing Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:
• The time to setup 10,000 keys for encryption;
• The time to encrypt 8192 blocks of data (8192 blocks*128 bits/block=1048576

bits=1Mbit);
• The time to setup 10,000 keys for decryption; and,
• The time to decrypt 8192 blocks of data (8192 blocks*128 bits/block=1048576

bits=1Mbit).

Analysis of this data was performed in the same way as the cycle count program listed above in
Section 3.1 (calculation of standard deviation, median, etc.)  Results for the Timing Program can
be found in Section 5.2.  Pseudo code for the generation of timing information for the
blockEncrypt() operation is included in Figure 2.

3.2 Compiler Options

PC

On the three PCs used during testing, all algorithms were compiled using the same compiler
options. Those options and their effect are:

• Borland:
Ø -Oi Expand common intrinsic functions
Ø –6 Generate Pentium Pro instructions
Ø –v Source level debugging (does not effect speed)
Ø –A Use only ANSI keywords
Ø –a4 Align on 4 bytes
Ø –O2 Generate fastest possible code

makeKey();
cipherInit();
for(r=0; r<1000; r++){

(Start Timer)
blockEncrypt(8192 blocks);
(Stop Timer)
}

Fig. 2: Pseudo code for Time Testing for blockEncrypt()



• Visual C:
Ø /G6 Pentium Pro instructions
Ø /Ox Best optimization for speed

• Linux/GCC:
Ø -O3 Best optimization for speed

The Borland programs were compiled on the 200 MHz Pentium Pro Reference machine.  The
Visual C and DJGPP programs were compiled on the 450 MHz Pentium II machine.  The Linux
operating system was installed on a Jaz drive attached to the 200 MHz Pentium Pro Reference
machine.  Compilations for GCC under Linux were performed on this machine.

Sun

All algorithms were compiled using the same compiler options.  Those options and their effect
are:

• GCC: -O3 Best optimization for speed
• Workshop: -xO5 Best optimization for speed

The compilations for the Sun systems were performed on the 300 MHz UltraSPARC II system.

SGI

All algorithms were compiled using the same compiler option.  That option and its result is:
• GCC: -O3 Best optimization for speed
• MIPSpro: -O3 Best optimization for speed

The Twofish algorithm compiles on the SGI using the MIPSpro compiler, but results in a Bus
Error and a core dump when the blockEncrypt() and blockDecrypt() functions are
invoked.  This appears to be a problem with how the compiler is handling byte alignment in the
optimized code.

4. Observations

Some of the algorithms use flags to determine which compiler is used.  By checking which
compiler is used, an algorithm may substitute commands that direct the compiler to insert code to
make use of instructions available on the CPU.  The most common example of this is the use of
the ROTL and ROTR instructions to perform left and right logical rotations, respectively.  Using
the machine instruction to perform these rotations results in code which is two cycles faster than
performing the equivalent sequence of using a pair of shifts and an OR operation.  This can
provide a performance enhancement on various compilers that other algorithms do not enjoy
because they do not perform this type of compiler dependent compilation.  The Borland compiler
does not make use of the machine instructions of ROTL and ROTR.  The Visual C compiler can
make use of the machine instructions by using the routines _rotl() and _rotr() to perform
the rotation.



The blockEncrypt() and blockDecrypt() times improved as the numbers of blocks
passed to the algorithm at the same time increased, because the API overhead is averaged over
more blocks, and more data is available in the cache.  The larger amounts of data are still
encrypted and decrypted in ECB mode; however, in operational use, Cipher-Block Chaining
(CBC) mode would likely be used.  Efficiency testing was not performed in CBC mode because
this would add another layer of data processing that has no real impact on the performance of the
algorithm, i.e., pre- and post-processing the data before calling the algorithms’ internal ciphering
routines.  In addition, there may be performance characteristics from one algorithm to another,
based on whether data is treated as two 64-bit blocks or four 32-bit blocks, but this effect
depends on the processor characteristics.

5. Results

5.1 Cycle Count Tables

The values4 in Ekey, Dkey, Enc, and Dec are all in clock cycles.  These values refer to:

• Ekey - The number of cycles needed to setup a 128-bit key for encryption;
• Dkey - The number of cycles needed to setup a 128-bit key for decryption;
• Enc - The number of cycles per block needed to encrypt n blocks of data; and,
• Dec - The number of cycles per block needed to decrypt n blocks of data.

Note: the data encrypted and decrypted in the cycle count measurements was random (as
opposed to using all zero data blocks).

Cycles – Borland C++ 5.01 – 200 MHz Pentium Pro, 64MB RAM, Windows95

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6815 6814 1097 1049 944 921 937 913 938 914 957 933
MARS-192 7001 7001 1094 1059 947 921 938 913 937 918 956 935
MARS-256 7222 7222 1081 1058 944 926 938 913 939 914 958 932
RC6-128 5171 5170 950 911 630 576 610 556 614 558 629 582
RC6-192 5254 5265 950 914 636 578 609 555 614 558 629 582
RC6-256 5330 5331 949 914 630 576 610 556 614 558 629 582
RIJNDAEL-128 2208 2870 826 836 690 690 685 686 682 681 704 714
RIJNDAEL-192 2972 3786 958 961 823 815 815 808 820 811 850 835
RIJNDAEL-256 3691 4684 1106 1137 982 996 939 946 939 947 961 968
SERPENT-128 12324 12291 3569 3273 3429 3158 3422 3155 3422 3163 3436 3178
SERPENT-192 14389 14398 3574 3301 3429 3159 3420 3147 3424 3165 3438 3176
SERPENT-256 16639 16644 3570 3214 3429 3074 3420 3064 3425 3163 3438 3175
TWOFISH-128 13544 13372 1052 1009 725 681 706 660 708 662 727 687
TWOFISH-192 15707 15544 1052 993 722 675 706 660 708 663 728 686
TWOFISH-256 21344 21181 1049 996 723 679 704 660 708 661 729 682

                                                          
4 The relative uncertainty for values in all tables is ≤ 1%.



Cycles – Visual C 6.0 – 200 MHz Pentium Pro, 64MB RAM, Windows95

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4964 4964 837 754 687 598 681 593 684 595 718 629
MARS-192 4996 4996 821 737 686 601 680 593 683 596 719 629
MARS-256 5185 5185 823 743 689 601 680 593 682 595 720 629
RC6-128 2293 2294 640 627 351 351 340 332 343 334 382 355
RC6-192 2401 2402 640 627 352 351 340 332 343 334 382 355
RC6-256 2512 2513 642 629 352 351 343 332 343 334 382 355
RIJNDAEL-128 1278 1764 1277 1308 1138 1133 1125 1136 1134 1135 1149 1124
RIJNDAEL-192 2002 2566 1512 1574 1368 1362 1358 1365 1361 1372 1388 1365
RIJNDAEL-256 2591 3257 1732 1798 1604 1596 1591 1599 1596 1601 1614 1588
SERPENT-128 7092 7104 1439 1293 1298 1135 1286 1129 1285 1128 1326 1165
SERPENT-192 9048 9035 1455 1294 1295 1135 1285 1126 1285 1126 1326 1168
SERPENT-256 10861 10850 1454 1275 1292 1135 1285 1127 1286 1128 1326 1166
TWOFISH-128 9950 9790 1264 1024 965 725 947 707 950 711 967 740
TWOFISH-192 13298 13136 1265 1020 966 728 947 707 949 721 965 753
TWOFISH-256 18555 18394 1278 1016 965 726 947 707 950 710 966 743

Cycles – Borland C++ 5.01 – 450 MHz Pentium II, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6837 6837 1105 1082 947 924 939 913 941 920 986 963
MARS-192 7040 7038 1105 1092 949 919 939 913 937 921 985 961
MARS-256 7249 7249 1105 1082 949 922 936 914 941 921 992 966
RC6-128 5186 5183 984 944 631 578 610 556 617 560 651 598
RC6-192 5279 5279 984 943 631 577 609 555 617 560 651 598
RC6-256 5363 5364 984 944 631 578 609 555 617 560 651 598
RIJNDAEL-128 2254 2912 845 844 689 699 681 692 696 697 777 783
RIJNDAEL-192 2994 3778 983 993 818 814 811 807 826 820 892 896
RIJNDAEL-256 3722 4668 1099 1125 948 958 938 948 954 952 1021 1027
SERPENT-128 11767 11671 3108 2702 2855 2496 2842 2480 2847 2488 2868 2523
SERPENT-192 13872 13852 3108 2705 2856 2478 2842 2465 2847 2467 2868 2505
SERPENT-256 16073 15978 3108 2710 2857 2500 2842 2488 2847 2500 2868 2528
TWOFISH-128 12907 12816 1063 1034 726 677 702 657 708 662 755 708
TWOFISH-192 15311 15219 1061 1031 726 680 704 658 706 665 753 712
TWOFISH-256 20706 20645 1061 1018 727 679 703 657 708 663 754 713



Cycles – Visual C 6.0  - 450 MHz Pentium II, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4937 4938 825 734 669 582 658 571 669 583 715 628
MARS-192 4999 4999 825 734 669 578 658 572 667 582 716 629
MARS-256 5175 5175 825 734 668 582 658 572 667 583 716 628
RC6-128 2283 2284 638 622 339 327 321 310 330 320 379 354
RC6-192 2408 2409 638 622 339 327 321 310 330 320 379 354
RC6-256 2519 2520 638 622 339 327 321 310 330 320 379 354
RIJNDAEL-128 1292 1722 987 987 810 801 808 789 826 796 894 866
RIJNDAEL-192 2014 2553 1152 1135 987 969 983 957 1005 972 1079 1039
RIJNDAEL-256 2594 3241 1329 1311 1161 1135 1158 1124 1173 1132 1238 1202
SERPENT-128 6947 6935 1423 1262 1273 1116 1263 1107 1281 1122 1320 1162
SERPENT-192 8857 8857 1423 1280 1274 1117 1263 1107 1281 1122 1320 1162
SERPENT-256 10666 10683 1423 1256 1274 1117 1263 1108 1281 1122 1320 1162
TWOFISH-128 9266 9249 1126 952 802 636 782 615 800 628 831 669
TWOFISH-192 12707 12627 1130 952 802 634 782 616 795 622 832 673
TWOFISH-256 17942 17863 1126 955 802 635 782 616 795 622 832 672

Cycles – Borland C++ 5.01 – 600 MHz Pentium III, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6833 6833 1143 1120 951 924 938 913 947 921 976 959
MARS-192 7017 7017 1171 1131 951 926 938 914 940 917 980 959
MARS-256 7245 7245 1143 1120 950 927 939 913 943 918 978 959
RC6-128 5189 5186 1022 982 633 580 610 555 620 567 642 637
RC6-192 5272 5271 1022 982 633 580 610 556 620 567 642 637
RC6-256 5362 5363 1026 982 633 580 609 556 620 567 642 637
RIJNDAEL-128 2213 2862 908 890 692 694 681 681 700 687 757 747
RIJNDAEL-192 2981 3776 1031 1047 820 809 809 799 818 813 883 873
RIJNDAEL-256 3727 4672 1152 1140 959 950 935 937 947 944 1002 996
SERPENT-128 11850 11849 3161 2743 2859 2497 2842 2490 2855 2468 2870 2516
SERPENT-192 13937 13916 3164 2739 2861 2484 2841 2467 2856 2495 2870 2536
SERPENT-256 16133 16114 3165 2737 2859 2500 2841 2485 2849 2483 2869 2536
TWOFISH-128 12938 12861 1085 1057 724 682 704 658 712 667 763 718
TWOFISH-192 15347 15298 1085 1078 727 680 704 659 713 668 764 716
TWOFISH-256 20760 20689 1085 1053 729 681 704 658 718 664 764 713



Cycles – Visual C 6.0  - 600 MHz Pentium III, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4934 4936 860 769 668 581 656 569 683 585 708 617
MARS-192 4997 4997 860 769 668 578 656 569 682 585 709 618
MARS-256 5171 5171 860 769 669 581 656 569 682 586 709 617
RC6-128 2278 2279 672 657 339 327 318 307 325 318 366 346
RC6-192 2403 2404 672 657 339 327 319 307 325 318 366 346
RC6-256 2514 2515 672 657 339 327 319 307 325 318 366 346
RIJNDAEL-128 1289 1724 1007 1006 811 802 805 784 824 794 880 848
RIJNDAEL-192 2000 2553 1188 1169 987 966 981 955 1003 971 1069 1023
RIJNDAEL-256 2591 3255 1365 1347 1160 1138 1155 1121 1171 1131 1227 1187
SERPENT-128 6944 6933 1458 1315 1273 1113 1261 1104 1281 1120 1309 1150
SERPENT-192 8853 8853 1459 1297 1273 1116 1260 1102 1281 1123 1309 1151
SERPENT-256 10668 10668 1459 1315 1273 1115 1262 1103 1281 1120 1309 1150
TWOFISH-128 9263 9241 1161 987 802 635 780 613 797 625 828 664
TWOFISH-192 12722 12632 1165 987 802 633 779 613 791 619 828 666
TWOFISH-256 17954 17876 1161 990 802 635 780 613 792 622 828 665

5.2 Timing Tables

Values in the tables are as follow:

• Ekey (time to make a key for encryption) is in Keys/sec;
• Encrypt (time to encrypt) is in Kbits/sec;
• Dkey (time to make a key for decryption) are in Keys/sec; and,
• Decrypt (time to decrypt) is in Kbits/sec.



GCC 2.8.1 - 200 MHz Pentium Pro, 64MB RAM, Linux

Ekey Encrypt Dkey Decrypt

Mars-128 46729.0 39035.8 46511.6 37135.9
Mars-192 44444.4 39035.8 44642.9 37135.9
Mars-256 42918.5 38855.1 43103.4 37135.9
RC6-128 59523.8 37300.9 58823.5 52454.4
RC6-192 57142.9 37300.9 57803.5 52454.4
RC6-256 56818.2 37300.9 57142.9 52454.4
Rijndael-128 128205.1 42602.6 106383.0 41754.7
Rijndael-192 88495.6 36175.4 74074.1 35562.3
Rijndael-256 74074.1 31551.5 62500.0 30969.4
Serpent-128 16891.9 13052.4 16920.5 16328.2
Serpent-192 13123.4 13052.4 13140.6 16328.2
Serpent-256 10559.7 13052.4 10582.0 16328.2
Twofish-128 14471.8 20671.7 14450.9 22261.8
Twofish-192 11086.5 20671.7 11025.4 22261.8
Twofish-256 8305.6 20671.7 8291.9 22261.8

SGI 300 MHz R12000 w/4MB Cache, 512 MB RAM

GCC 2.8.1 MIPSpro C Compiler Version 7.30
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 60975.6 63581.1 60975.6 66608.8 78125.0 67683.1 78125.0 71124.6
Mars-192 59171.6 63581.1 59523.8 67141.6 76923.1 67683.1 76923.1 70526.9
Mars-256 57803.5 63581.1 57803.5 66608.8 75188.0 67683.1 75188.0 70526.9
RC6-128 147058.8 86522.7 147058.8 98737.7 166666.7 80699.1 166666.7 87424.0
RC6-192 142857.1 86522.7 142857.1 98737.7 161290.3 80699.1 161290.3 87424.0
RC6-256 138888.9 86522.7 138888.9 98737.7 156250.0 80699.1 156250.0 87424.0
Rijndael-128 212766.0 58282.7 161290.3 58282.7 212766.0 74271.7 153846.2 79930.5
Rijndael-192 163934.4 49080.1 125000.0 49368.8 142857.1 63103.0 109890.1 68233.4
Rijndael-256 142857.1 42387.4 108695.7 42819.9 121951.2 54498.1 93457.9 58690.2
Serpent-128 47393.4 42174.4 47393.4 46113.8 57471.3 42819.9 57471.3 45612.5
Serpent-192 37878.8 41963.5 38022.8 46113.8 44247.8 42602.6 44247.8 45612.5
Serpent-256 31250.0 41963.5 31250.0 46113.8 35461.0 42602.6 35461.0 45612.5
Twofish-128 31055.9 59947.9 31055.9 63581.1 41493.8 N/A 41841.0 N/A
Twofish-192 23255.8 60379.2 23310.0 64066.4 32786.9 N/A 33112.6 N/A
Twofish-256 16420.4 59947.9 16447.4 63581.1 22321.4 N/A 22522.5 N/A



Sun 300 MHz UltraSPARC-II w/ 2MB Cache, 128 MB RAM

GCC 2.95 Sun Workshop Compiler 4.2
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 48780.5 29867.3 48543.7 29242.9 52356.0 30081.4 53475.9 29973.9
Mars-192 47393.4 29867.3 46948.4 29141.3 52356.0 30081.4 52083.3 30081.4
Mars-256 46082.9 29867.3 45662.1 29242.9 51020.4 29973.9 51282.1 30081.4
RC6-128 111111.1 20981.8 113636.4 20981.8 111111.1 20470.0 24390.2 20420.2
RC6-192 108695.7 20981.8 108695.7 20981.8 101010.1 20520.1 24449.9 20470.0
RC6-256 105263.2 20981.8 106383.0 20981.8 24390.2 20520.1 98039.2 20470.0
Rijndael-128 172413.8 45612.5 131578.9 38498.6 166666.7 49368.8 117647.1 50864.9
Rijndael-192 140845.1 37805.0 106383.0 32033.2 128205.1 41963.5 85470.1 43261.4
Rijndael-256 117647.1 33042.1 90090.1 27517.1 108695.7 36490.0 73529.4 37467.4
Serpent-128 30120.5 34537.9 30120.5 34969.6 33783.8 32156.0 33898.3 32912.6
Serpent-192 25000.0 34255.9 25000.0 34969.6 27173.9 32033.2 27248.0 32912.6
Serpent-256 21008.4 33841.5 21052.6 34824.5 22421.5 32156.0 22421.5 33042.1
Twofish-128 22321.4 36972.3 22321.4 36020.2 21739.1 41963.5 21739.1 7851.0
Twofish-192 16366.6 36972.3 16366.6 36020.2 16447.4 41754.7 16420.4 7880.5
Twofish-256 11547.3 37300.9 11560.7 36020.2 12285.0 42174.4 12300.1 7865.7

Sun 2*360 MHz UltraSPARC-II w/ 4MB Cache, 256 MB RAM

GCC 2.95 Sun Workshop Compiler 4.2
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 59523.8 36332.1 59523.8 35562.3 65359.5 36649.4 65359.5 36810.1
Mars-192 57803.5 36175.4 57803.5 35412.3 64102.6 36649.4 64102.6 36810.1
Mars-256 56179.8 36175.4 56179.8 35562.3 62500.0 36649.4 62500.0 36810.1
RC6-128 138888.9 26227.2 138888.9 26227.2 142857.1 25587.5 142857.1 25587.5
RC6-192 133333.3 26227.2 135135.1 26227.2 136986.3 25587.5 138888.9 25587.5
RC6-256 129870.1 26227.2 129870.1 26227.2 131578.9 24978.3 131578.9 24978.3
Rijndael-128 217391.3 55215.2 161290.3 47958.3 200000.0 59522.7 142857.1 61260.6
Rijndael-192 172413.8 46886.6 129870.1 39965.3 158730.2 50864.9 107526.9 52454.4
Rijndael-256 142857.1 40940.0 109890.1 34396.3 133333.3 44405.8 88495.6 45612.5
Serpent-128 36101.1 41963.5 36231.9 42819.9 42372.9 39035.8 42372.9 39965.3
Serpent-192 30303.0 41963.5 30303.0 42819.9 34013.6 39035.8 34013.6 39965.3
Serpent-256 25641.0 41963.5 25641.0 42819.9 28328.6 39035.8 28328.6 39965.3
Twofish-128 27322.4 45122.1 27248.0 43039.5 26738.0 53118.4 26738.0 51489.0
Twofish-192 20080.3 44880.8 20080.3 43039.5 20120.7 53456.7 20120.7 51489.0
Twofish-256 14184.4 44880.8 14164.3 43261.4 15015.0 53456.7 15037.6 51806.8



6. Conclusions

6.1 PC

Due to the testing mechanisms used in obtaining data, the most reliable and accurate values
obtained for performance measurement of the candidate algorithms are the cycle counting
measurements on the PC.  Additionally, cycle count values for encryption and decryption were
obtained for various data block lengths.  These values provide interesting results.  For the most
part, once the data length was greater than one block (128 bits), the encryption and decryption
speeds were consistent within each algorithm.  For this reason, NIST focused on the message
block length of 128 blocks (2046 bytes), which is a typical size for an electronic mail message.
The fastest algorithm for key setup on the PC platform is Rijndael for all compiler and PC
hardware/software configurations, followed closely by RC6 and then Mars.  Serpent and Twofish
are considerably slower than the other algorithms for key setup time.  Encryption speed had more
variability across compiler and hardware/software platforms.  RC6 tends to fall near the top of
PC encryption speed followed by Mars, Twofish, and Rijndael.  Serpent is consistently at the
bottom of the list for encryption speed.

Brian Gladman [4] has performed similar efficiency experiments, the results of which are
available on a web page he maintains.  The tests that Gladman conducted used code that he
developed independently from the submitters’ code.  Gladman’s results are similar to those listed
above.  Gladman’s results for key setup time have the algorithms in basically the same order.
The exception being the fact that Serpent’s key setup time was greatly improved and ahead of
Mars.  Again, for encryption speed, Gladman’s results coincide with the ordering of the
algorithms listed above.

6.2 Sun

The UltraSPARC CPU found in the Sun systems on which testing was performed did not allow
access to a cycle count mechanism.  Performance numbers on these systems are based on the
Timing Test Program.  Two different compilers were used on the Sun.  The data from both these
compilers yielded similar results.  The fastest algorithms with respect to encryption speed are
Rijndael and Twofish, followed by Serpent and Mars, and finally by RC6.  However, with
respect to key setup Rijndael and RC6 are the fastest followed by Mars which is separated by a
wide margin.  Serpent and Twofish are last after another wide margin.

Helger Lipmaa reports very similar results on an UltraSPARC-II platform [5].  Lipmaa’s table
only reports encryption speed. The most noticeable difference is that on his table, the value for
the encryption speed of RC6 is closer to those for Mars and Serpent.

6.3 SGI

The SGI system provides another 64-bit processor running the same version of the GCC
compiler used for the Sun testing described in Section 6.2.  Additionally, the MIPSpro compiler
provided another configuration for comparison.  The results for these compilers place RC6 as the
fastest algorithm for encryption by a wide margin, followed by Mars, Twofish, Rijndael and



Serpent.  For key setup, RC6 and Rijndael are the fastest, followed by Mars, Serpent, and
Twofish, which are separated by a wide margin.

6.4 Overall Performance

The consistent top performers across all platforms with respect to key setup are Rijndael and
RC6.  Serpent and Twofish are usually significantly poorer performers; however, Gladman
reports a much better value for Serpent key setup, placing Serpent ahead of Mars.  Encryption
speed values tend to vary much more depending on the platform being analyzed.  Rijndael, Mars,
and Twofish have the most even encryption performance across platforms – not always the
fastest, but never near the bottom of the pack.  RC6, on the other hand, was the slowest on the
Sun systems but the fastest on the SGI and very nearly the fastest on the PC.  Serpent is typically
the slowest or towards the bottom of the list on encryption speed across platforms.
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1. Introduction

NIST solicited candidate algorithms for the Advanced Encryption Standard (AES) in a
Federal Register Announcement dated September 12, 1997[1].  Fifteen of the
submissions were deemed “complete and proper” as defined in the Announcement, and
entered the first round of the AES selection process in August 1998.  Since that time,
NIST has been working with a worldwide community of cryptographers to evaluate the
submissions according to the criteria established in[1].  Five candidates were
subsequently chosen to enter the final round of the selection process:  MARS, RC6,
Rijndael, Serpent, and Twofish.

A previous NIST publication entitled “Report on the NIST Java™ AES Candidate
Algorithm Analysis”[2] documents the first round analysis performed by NIST, using the
Java Development Kit (JDK) Version 1.1.6.  Only IBM has submitted official
modifications to their candidate (MARS) prior to the final round.  Results of the first
round analysis using the JDK1.1.6 are therefore still valid for the other four candidates.
The revised version of MARS was tested under both JDK1.1.6 and JDK1.3, to ensure an
accurate comparison of the modified algorithm’s performance in both environments.
Performance data for 128, 192, and 256-bit keysizes are also included in the second
round analysis.

The JDK itself has gone through two major revisions since the first round.  This paper
documents additional performance data for the five AES finalists obtained under JDK1.3,
and should be used in combination with the first round NIST Java AES analysis to obtain
a complete picture of the characteristics of the finalists in different Java environments.
Some background information from the first round analysis is repeated herein for
convenience. Comments should be addressed to the author at the email address above.
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2. Java Platform

AES candidate algorithm submitters were required to provide optimized implementations
of their algorithms in Java and the C language.  The rationale for this was to provide
more information than could be obtained by testing implementations in a single language,
and to take advantage of the hardware independence of the Java virtual machine.

The Java virtual machine presents a uniform abstraction of the underlying hardware
platform to a Java application or applet.  A Java programmer compiles source code into
byte code files, which are then interpreted by the Java virtual machine at runtime (byte
code files are also known as class files).  In theory, a Java byte code file can be
interpreted on any hardware platform running the Java virtual machine without
recompilation.  Since the virtual machine isolates the Java programmer from the
underlying hardware, Java programmers cannot write machine-specific code to take
advantage of the unique features of a particular platform.  Machine-specific code allows
for optimization on a given computing platform, but also eliminates the code portability
that is a cornerstone of the Java philosophy.

The Java environment has two characteristics that facilitate the AES evaluation process.
First, candidate algorithms written in Java can be easily moved from one platform to
another to compare performance on different processors at different system clock speeds.
Second, submitters cannot write machine-specific code and so all implementations are on
a level playing field.

Java does not provide the level of performance that can be attained in some other
languages (C or assembler, for example).  However, many applications do not require
high-speed encryption of large amounts of data, and cryptoalgorithms implemented in
Java are easier to integrate into Java applications.  Other languages and hardware
implementations will be used for applications where absolute performance is an issue, but
there will also be a broad range of applications where the ease of implementing,
integrating, and maintaining Java AES code outweighs the performance issue.

3. Evaluation Criteria

The NIST Java AES evaluation process is designed to directly address the criteria
published in the Federal Register Announcement[1], Section 4.  The goal is to provide
objective results that can be clearly quantified for use in the selection process.  Sections
of the Announcement that describe selection critera relevant to the Java AES analysis are
repeated here for convenience:

COST

ii. Computational Efficiency:  “…Computational efficiency essentially refers
to the speed of the algorithm.  NIST’s analysis of computational efficiency



3

will be made using each submission’s mathematically optimized
implementations on the platform specified under Round 1 Technical
Evaluation below.”

iii. Memory Requirements:  “Memory requirements will include such factors
as gate counts for hardware implementations, and code size and RAM
requirements for software implementations.”

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

i. Flexibility:

b. “The algorithm can be implemented securely and efficiently in a wide
variety of platforms and applications (e.g. 8-bit processors, ATM
networks, voice & satellite communications, HDTV, B-ISDN, etc.).”

ii. Simplicity:  “A candidate algorithm shall be judged according to relative
simplicity of design.”

Additionally, in Section 6.B (Round I Technical Evaluation):

iii. Efficiency testing:  “Using the submitted mathematically optimized
implementations, NIST intends to perform various computational
efficiency tests for the 128-128 key-block combination, including the
calculation of the time required to perform:

o  Algorithm setup,
o  Key setup,
o  Key change, and
o  Encryption and decryption.

NIST may perform efficiency testing on other platforms.”

In condensed form, the published NIST criteria require testing of speed for a set of
cryptographic operations, code size and RAM requirements, flexibility, and simplicity of
design.  Since the candidates have been implemented in Java, flexibility is a given for the
reasons discussed in the previous section.  The Java AES candidates will run on any
device containing a Java virtual machine and adequate memory, although performance
will obviously vary depending on the processing power of the underlying hardware.

4. Test Procedures

4.1 Overview
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The test results presented here were obtained from the NIST-specified hardware platform
and the most recent version of the Java environment available at the time of this writing
(JDK1.3, beta release).  Results for other hardware/Java virtual machine combinations
will be made available on the AES home page at http://www.nist.gov/aes, and in papers
submitted to NIST by other organizations[3,4,5].  Detailed test results are presented in
tabular form in Appendices A and B, and chart form in Appendix C.  All NIST testing
was performed through the Applications Programming Interface (API) specified in the
NIST/Cryptix Java AES Toolkit.  Links to the Toolkit and the Java AES API
specification can be found at http://csrc.nist.gov/encryption/aes/earlyaes.htm.

The Java compiler provided with JDK1.3 accepts a command line code optimization
switch (-O).  However, the JDK1.3 documentation[6] states that this switch “does
nothing in the current implementation”.  Presumably the compiler accepts the
optimization switch for reasons of backward compatibility.

4.2 Procedures

Candidate algorithms were compiled from source files provided by submitters using the
JDK1.3 compiler.  The resulting bytecode files were packaged into a standard Java
ARchive (JAR) file named AESCLASSES.jar.

A Java application was developed to allow testing of any candidate/ keysize/operation
combination. The test application instantiates the desired candidate from
AESCLASSES.jar, and uses the Java reflection API to invoke the Basic API methods.

500,000 cycles of each candidate/keysize/crypto operation were executed, and the total
time was recorded for each combination.  Start and stop times were obtained through
calls to the System.time.millis() method provided in the Java core library, immediately
before and after starting the loop that executed the crypto operations.  Charts 1, 2, and 3
present performance data for key setup, encrypt, and decrypt operations, respectively.
Data points are included for 128, 192, and 256-bit key sizes.  For the majority of
candidates, encryption and decryption speed is approximately equal for all three key
sizes.  Rijndael is a minor exception: encryption speed decreases by approximately three
percent for each stepwise increase in key size.

5. Results

In comparison to the JDK1.1.6 performance data presented in NIST’s previous paper[2],
the results obtained with JDK1.3 show a striking increase in execution speed for all
candidates.  On average, the five candidates perform 128-bit key setup operations eleven
times faster.  The average speed for encrypt and decrypt operations has increased by a
factor of five.  The same hardware platform and program code (except for MARS) were
used for both first round and final round testing, so the overall increase in performance
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can be attributed to differences in the Java environment.  In particular, JIT (Just-In-Time)
compilation was not used during the first round performance analysis due to a bug in the
JDK1.1.6 JIT implementation that caused problems with certain candidates.  Usage of the
JIT compiler under JDK1.1.6 increases performance by a factor of ten for most Java
programs.

Performance data for the new version of MARS under JDK1.1.6 are presented separately
in Appendix A.  The test setup for the MARS/JDK1.1.6 analysis was exactly the same as
for the other algorithms during the first round, and is described in[2].

In addition to the overall performance increase of the finalists under JDK1.3, there were
some changes in the relative ordering of candidates.  Most of these changes in order were
due to relatively small performance differences, as shown in Appendices B and C.  The
results for 128-bit keysize operations are summarized below, with candidates ordered
from fastest to slowest:

128-bit Key Setup:

JDK1.1.6: Rijndael, RC6, MARS, Twofish, Serpent

JDK1.3: RC6, MARS, Rijndael, Serpent, Twofish

128-bit Encrypt:

JDK1.1.6: RC6, Rijndael, MARS, Serpent, Twofish

JDK1.3: Rijndael, RC6, MARS, Serpent, Twofish

128-bit Decrypt Operations:

JDK1.1.6: RC6, Rijndael, MARS, Serpent, Twofish

JDK1.3: Rijndael, RC6, MARS, Twofish, Serpent

“Sun”, “Sun Microsystems”, “Solaris”, and “Java” are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries.
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APPENDIX A:  JDK1.1.6 DATA FOR MARS

Key Size Key Setup Encrypt Decrypt
128 bits 165 462 444
192 bits 244 466 444
256 bits 324 465 445

Table data are presented in kilobits per second.
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 APPENDIX B:  RAW DATA TABLES

Algorithm setKey128 setKey192 setKey256
RC6 2233 3335 4444
MARS 2110 3131 4131
Rijndael 1191 1574 1733
Serpent 487 734 979
Twofish 286 327 361

Algorithm Encrypt128 Encrypt192 Encrypt256

Rijndael 4855 4664 4481
RC6 4698 4740 4733
MARS 3738 3707 3733
Serpent 1843 1855 1861
Twofish 1749 1749 1744

Algorithm Decrypt128 Decrypt192 Decrypt256
Rijndael 4819 4624 4444
RC6 4733 4698 4740
MARS 3965 3965 3936
Serpent 1873 1897 1896
Twofish 1781 1775 1781

Table data are presented in kilobits per second.
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APPENDIX B: PERFORMANCE DATA CHARTS
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Chart 1:  Key Setup
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Chart 2:  Encrypt
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Chart 2.3:  Decrypt
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Abstract
We analyze the five remaining AES candidate al-

gorithms MARS, RC6, Rijndael, Serpent, and Twofish
as well as DES, Triple DES, and IDEA by examining
independently developed Java implementations. We
give performance measurement results on several
platforms, list the memory requirements, and present
a subjective estimate for the implementation difficulty
of the algorithms. Our results indicate that all AES
ciphers offer reasonable performance in Java, the
fastest algorithm being about twice as fast as the
slowest.

1. Introduction

The performance of the AES candidates has been
the subject of  significant discussion, both in the
authors' specifications as well as by other parties.
Most of this discussion was focused on C and assem-
bler implementations. Some attention has been given
to Java implementations but the results were not fully
conclusive. This was mostly caused by the fact that
the authors' reference Java implementations were
evaluated which vary significantly in their coding
assumptions and in the degree to which they were
subject to optimizations. We intend to fill this gap by
evaluating independently developed, consistent Java
implementations and comparing the AES candidates'
performance to ciphers currently in use.

2. Implementation Notes

The code was developed at the IAIK by Andreas
Sterbenz. The AES core code is available under a free
license including source at [1] or with a JCE 1.2
compatible API as part of the IAIK JCE library. Ser-
pent S-Box expressions and Rijndael and Twofish
setup code are based on C code developed by Dr.
Brian Gladman [2].

The design paradigm used is derived from the Java
Cryptography Extension (JCE) defined by Javasoft
and modified for use within the IAIK JCE library: for
each cipher stream a Java object is created which is
then initialized with a certain key in either encryption

or decryption mode. Then the data to be encrypted is
passed to the encrypt (decrypt) method one 128 bit
block at a time. Buffering, block chaining, and pad-
ding are all performed on a higher level and do not
influence the design of the core code. Therefore, for
each AES cipher only three methods need to be pro-
vided: key setup, encryption, and decryption.

The algorithms have been subject to significant
optimization work. The primary focus for the optimi-
zation was to maximize encryption and decryption
throughput. Secondary and tertiary goals were key
setup speed and memory usage, respectively.

3. Java

The Java programming language has become fairly
popular in recent years. This is partly due to the fact
that Java programs are platform (i.e. processor and
operating system) independent in both source and
binary form. This is possible by employing  a compi-
lation model different from that in most other lan-
guages. Instead of compiling source code into ma-
chine code for one particular processor family, the
compiler produces machine code (called "bytecode")
for an imaginary Java Virtual Machine (JVM). At
runtime this bytecode is then translated into machine
code by a JVM implementation for the particular
platform.

This extra step has influences on the programming
process when optimizing code. It takes you one step
farther away from the hardware making some typical
optimization tricks impossible, like for example di-
rectly using the processor rotation instruction. An-
other problem is that a sizable portion of the compi-
lation is delayed until runtime and performed by the
JVM. As they are not designed for optimizations this
has the effect that those optimizations are not made.

Of course there are several options for the transla-
tion of bytecode to machine code. The simplest and
most obvious is to use an interpreter: take one JVM
instruction at a time and execute the corresponding
machine code instruction(s). Much better perform-
ance is offered by so-called Just-In-Time (JIT) com-
pilers. They take an entire method and translate it to
machine code prior to its first execution, subsequently



the generated machine code is executed. JITs are now
the common JVM type on most platforms and offer
an approximately ten times performance improve-
ment over interpreters. As a third type of JVMs there
are hybrid variants aimed at reducing the initial delay
caused when the JIT compilers translate a large num-
ber of methods at program startup, but this is not
relevant for our application.

3.1. Java in Cryptographic Applications

Today the opinion that Java is not the language to
be used for cryptographic applications still seems to
be popular. Obviously we do not agree. While Java is
of course slower than C the difference is typically less
than a factor of two, heavily optimized C code ex-
cluded, as demonstrated by the results presented in
this paper. Although this difference is of course sig-
nificant Java on today's hardware is faster than C on
two year old hardware. The point being that while
Java will hardly be the language of choice for high
load servers it may well be the choice for medium
load servers and especially clients. Add to that hand-
held and other small devices and performance in Java
becomes an issue.

One particular advantage of Java is that there is a
well established standard cryptographic API, the JCA
and JCE architecture from Javasoft. The success of
cryptography libraries in Java including the libraries
from the IAIK confirms this position.

4. Evaluation Parameters

The algorithms were implemented in Java. Those
implementations were evaluated with respect to three
criteria: execution speed, memory usage, and imple-
mentation difficulty.

4.1. Execution Speed

For symmetric ciphers there are three components
that make up the time required to encrypt some data:
static initialization time, key setup time, and data
encryption time.

Static initialization is used to perform certain
preparation steps, generate constant tables, etc. Be-
cause it takes very little time and is largely dependent
on the code size vs. speed tradeoff chosen in the im-
plementation it was not measured.

Key setup is used to initialize a cipher for a certain
key, i.e. perform round key generation, etc. It is per-
formed once per encryption stream. It may be de-
pendent on whether encryption or decryption mode is
chosen and on the key length. For the ciphers ana-
lyzed only Rijndael and IDEA have different key
setup times for encryption and decryption modes and

only Rijndael and Twofish significantly different
setup times for different key lengths.

Data encryption time is of course the time it takes
to encrypt data bits once the cipher has been properly
initialized. The AES candidates are 128 bit block
ciphers, that means one encryption operation is per-
formed every 16 data bytes. Again it may vary with
the cipher's mode and key length. For all ciphers
analyzed the encryption and decryption times are
virtually identical and only Rijndael's performance is
dependent on the key length.

4.1.1. Key Setup Speed Measurement
Key setup speed was determined as described by

the following pseudo code:

Repeat 128 times
    Generate 32 random keys
    Start timer
    For each key
      Repeat 1024 times
        Initialize cipher with key
    Stop timer

To obtain the final value the average of all meas-
urements within three standard deviations was calcu-
lated.

4.1.2. Encryption Speed Measurement
Similarly encryption speed was measured:

Repeat 128 times
    Generate a random key
    Initialize cipher with key
    Start timer
    Repeat 2048 times
      Encrypt a 1024 byte array
    Stop timer

The same method as above was used to obtain the
final value. Note that the same 1024 byte array is
encrypted each time which takes full advantage of the
CPU caches. In other words, the results presented
here are upper boundaries for real world performance.

4.1.3. Environment
The code was compiled using Symantec Visual

Cafe 2.5a with optimizations enabled. The results
were obtained by running the tests on a machine with
an Intel Pentium Pro 200 MHz CPU and 128 MB
RAM running Windows NT 4.0 with Service Pack 4.
Performance wise this is virtually identical to the
NIST reference platform (64 MB RAM and running
Windows 95).

However, it should be noted that the actual devel-
opment and optimization was done on a machine
using an AMD K6-2 processor. The optimizing proc-
ess, which includes trial and error strategies was per-
formed to maximize throughput on this machine and
not the reference machine. This may in some cases



lead to cases were the performance on the reference
machine is not as good as it could be.

4.2. Memory Usage

We give an estimate of the memory required for
each of the algorithms. The size of the class file (de-
bugging information removed) is listed to give an
idea of the total size, consisting of code size and data
like S-Box tables, etc. This is only done for the AES
candidates because the other algorithms use a slightly
different API which would skew results.

Probably more interesting is the amount of mem-
ory required during execution. We list the data mem-
ory used obtained by counting the variables used in
the source code. Overhead for arrays or data allocated
on the stack is not counted as it is fairly small and
approximately identical for all of the algorithms.

4.3. Implementation Difficulty

We also assign implementation difficulty "grades"
to the algorithms. In difference to the other criteria
these were not measured but are subjective estimates
for the time it required to arrive at an acceptably fast
implementation of the algorithm. If we want to look
at it in a quasi formal way we identify the following
factors:

• Time taken to understand the algorithm (at
least well enough to be able to implement it).

• Time taken to understand how to efficiently
implement the algorithm on a 32 bit platform.
As some algorithms need to be coded very dif-
ferently from their specification in order to be
efficient this part may constitute a significant
part of the total time.

• Time taken to actually code the implementa-
tion.

The first two points are of course to some degree
dependent on the documentation provided by the
algorithm designers and other parties. Therefore, new
or improved documentation may update the results
given here.

5. Algorithms

5.1. DES

The Data Encryption Standard (DES) is the current
US standard which the AES will eventually replace. It
dates back from the 1970s and has become inadequate
in particular because of its key length of only 56 bit.
DES was designed for hardware implementations and
requires tricks to operate moderately fast in 32 bit
software implementations. These tricks are not obvi-
ous which is why DES only earns a B- for imple-
mentation difficulty. However, an advantage of DES
over all other algorithms examined except Triple DES
is that the encrypt and decrypt operations are identical
save for the key schedule resulting in smaller code.

5.2. Triple DES

Triple DES overcomes the limitation of the short
DES key length by using three DES cores with sepa-
rate keys in sequence. This results in an effective
strength of 112 bit (meet in the middle attacks) at the
price a significant performance drop. Triple DES only
performs somewhat faster than one third of the speed
of DES (reduced overhead, leaving off the initial and
final permutations), which means it is very slow in
software. Implementation difficulty is B- as with
DES.

DES Triple DES IDEA MARS RC6 Rijndael Serpent Twofish
Class File Size n/a n/a n/a 9984 1931 4900 12483 5204
Per process memory 5120 5120 0 3220 0 20520 0 6816
Per instance memory 128 384 416 220 432 240 576 4400

Table 1: Class file size and memory usage in bytes.
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5.3. IDEA

IDEA is a 16 bit oriented cipher which uses multi-
plication modulo 65537 for fast diffusion. Conse-
quently it performs quite well compared to DES (de-
pending on the processors multiplication unit). How-
ever, its key setup is quite slow in decryption mode as
multiplicative inverses have to be calculated. It has
also to be noted that a class of weak keys has been
discovered. For implementation difficulty it earns B+
as that is fairly straight forward.

5.4. MARS

MARS is the first of the AES candidates we ex-
amine. It uses 8 rounds of unkeyed mixing before and
after the core encryption rounds. One of its advan-
tages is that a 32 bit implementation can be written
exactly the way the algorithm is specified, also aided
by the pseudo code given in the specification. Imple-
mentation difficulty B+.

5.5. RC6

RC6 is a cipher that evolved from RC5. It is very
simple to understand and implement and very fast on
32 bit processors; implementation difficulty A. Al-
though the least time was spent on optimizing RC6 it
still comes out as the fastest algorithm on almost all
platforms.

5.6. Rijndael

Rijndael was designed based on strong mathemati-
cal foundations. Implemented on 32 bit processors
only table lookup, XOR and shift operations are used.
The number of rounds in the Rijndael cipher in-
creases with the key length resulting in decreasing
speed for both key setup and encryption. Key setup
for Rijndael is very fast for in encryption mode but
slower in decryption mode as an additional inversion
step is required. Implementation difficulty B.

5.7. Serpent

Serpent was designed for so-called bitslice imple-
mentations. The idea is to view a 32 bit register as 32
one bit registers which are operated on by 32 one bit
SIMD processors with e.g. logical operations. How-
ever, S-Boxes have to be implemented via logical
expressions in this mode. Efficient expressions are
not trivial to obtain and no expressions are given in
the specification, contributing to the B- grade for
implementation difficulty. Serpent was designed with
a large safety margin of 32 rounds vs. about 20 mini-
mum secure rounds. This results in lower speed, the

penalty depending on the JVM implementation and
the processor.

5.8. Twofish

Twofish is a very flexible cipher that allows for
several implementation options allowing a memory
usage vs. key setup speed vs. encryption speed trade-
off. As maximum encryption throughput was desired
the "full keying" option was chosen for the imple-
mentation. A special property of Twofish is that key
dependent S-Boxes are used. This somewhat hurts
performance on certain JVMs, in particular when
using the Symantec JIT compiler that comes with the
JDK on the Windows platform and which was used
for the measurements. This means that Twofish may
be somewhat faster compared to the other algorithms
on other platforms. As Twofish is a quite complicated
cipher it earns B- for implementation difficulty.

6. Conclusions

We have analyzed the performance of the AES
candidate and other ciphers.

The results for encryption and decryption speed
show that RC6 is about 25% faster than the other
algorithms. Then MARS, Rijndael, and Twofish fol-
low with virtually identical performance for 128 bit
keys, Rijndael being slower for longer keys. Serpent
is trailing behind but is still about as fast as IDEA.
DES follows with Triple DES far behind. These re-
sults are similar to some tests made using C imple-
mentations but deviate much from Java studies. The
results also show that Java is no more than a factor of
2-3 slower than optimized C code.

The key setup performance is more varied with the
fastest AES candidate more than 7 times as fast as the
slowest. This appears to be partly due to differing
opinions about the purpose of the key schedule. It
could be viewed as a one way hash function: accept-
ing an arbitrarily long key, producing output of fixed
length (the round keys). All round keys depend on all
input bits and obtaining a round key (using some
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attack) does not yield any information about the
original key. Some algorithms try to approximate this
ideal while others only generate the necessary key
material in a straight forward way.

In any case Rijndael is the fastest algorithm with
respect to key setup, although it is not that far ahead
when keys longer than 128 bit are used and in de-
cryption mode. Twofish has a fairly slow key setup
using this implementation option.

In summary it can be said that if properly imple-
mented all algorithm offer reasonable performance in
Java. The results are mostly in line with those ob-
tained by studies evaluating C implementations.
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Appendix

This appendix includes the full performance figures as obtained on the reference machine.

Encryption
Speed

(kbit/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 10508 4178 12820 19718 26212 19321 11464 19265
192 bit key n/a n/a n/a 19760 26192 16922 11474 19296
256 bit key n/a n/a n/a 19737 26209 14957 11471 19275

Decryption
Speed

(kbit/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 10519 4173 13018 19443 24338 18868 11519 18841
192 bit key n/a n/a n/a 19670 24382 16484 11514 18841
256 bit key n/a n/a n/a 19489 24279 14468 11533 18806

Encryption
Key Setup

(keys/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 18128 5150 90571 28680 45603 96234 34729 13469
192 bit key n/a n/a n/a 27928 40625 86773 33516 10556
256 bit key n/a n/a n/a 26683 29069 70494 31973 8500

Decryption
Key Setup

(keys/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 18039 5136 20737 28743 45709 56017 34687 13469
192 bit key n/a n/a n/a 27917 40625 48324 33560 10550
256 bit key n/a n/a n/a 26731 39028 39963 31973 8531





Session 4:

"Cryptographic Analysis

and Properties"

(I)





MARS Attacks! Preliminary Cryptanalysis of
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Abstract. In this paper, we discuss ways to attack various reduced-
round variants of MARS. We consider cryptanalysis of two reduced-
round variants of MARS: MARS with the full mixing layers but fewer
core rounds, and MARS with each of the four kinds of rounds reduced by
the same amount. We develop some new techniques for attacking both
of these MARS variants. Our best attacks break MARS with full mix-
ing and five core rounds (21 rounds total), and MARS symmetrically
reduced to twelve rounds (3 of each kind of round).

1 Introduction

MARS [BCD+98] is a block cipher submitted by IBM to the AES [NIST97a]
[NIST97b], and one of the five finalists for AES. The cipher has an uncon-
ventional structure, consisting of a cryptographic “core” in the middle, and a
“wrapper” surrounding the core to protect it from various kinds of attack. As
with all ciphers, the only way we know to determine the strength of MARS is
to try to cryptanalyze various weakened versions of it.

In this paper, we discuss attacks on reduced-round variants of MARS. Be-
cause of MARS’ unconventional structure, there are many different reduced-
round variants worth considering. Here, we focus on two: A variant with the full
“wrapper” but fewer rounds of cryptographic core, and a variant with both the
core and wrapper reduced by the same number of rounds. In other work [KS00],
we have considered the cryptographic core without the wrapper. In view of the
stated purpose of the “core” and “wrapper” rounds, we believe the two variants
in this paper have a great deal to teach us about the ultimate strength of MARS.

1.1 Current Results

Our results are as follows:

Attacks on Reduced-Round MARS Variants
Reduced-Round Work Memory Text Requirements
Version
Full Mixing + 5 Core 2232 half encs 2236 bytes 8 known plain
Full Mixing + 5 Core 2247 partial encs 2197 bytes 250 known plain
6 Mixing + 6 Core 2197 partial decs 273 bytes 269 chosen plain
0 Mixing + 11 Core 2229 partial encs 269 bytes 265 chosen plain



For reasons of both space and clarity of presentation, the attacks against the
core rounds only are not included in this paper, and can be found in [KS00].

1.2 Implications of the Results

None of our current results on MARS come close to breaking the full cipher; our
best results to date break only 21 out of 32 rounds (and this counts attacking 16
mixing rounds, which are far weaker than the core rounds). However, the attacks
in this paper demonstrate ways to attack the MARS structure, and so highlight
potential weaknesses of that structure. They also help us to understand how the
components of this complex cipher interact to resist attack.

We also introduce a new kind of meet-in-the-middle attack, which may be
of independent interest. Although we demonstrate its use initially on MARS, it
may be useful against other ciphers, especially other ciphers with heterogenous
structures.

1.3 Guide to the Rest of the Paper

The remainder of the paper is arranged as follows: First, we discuss the structure
of MARS, and introduce notation and terminology to describe its inner workings.
Next, we discuss a set of attacks on MARS with only the number of core rounds
reduced. Next, we develop attacks on MARS variants with the same number of
each kind of round taken out. We conclude the paper with a discussion of the
new techniques we have developed for MARS, the implications of our results,
and some open questions.

2 The MARS Structure

The MARS structure can be considered as six different layers through which a
plaintext block must pass to become a ciphertext block:

1. Pre-Whitening Layer: The plaintext has 128 bits of key material added to
its words modulo 232.

2. Forward Mixing Layer: Eight rounds of unkeyed mixing operations making
extensive use of the MARS S-box.

3. Forward Core Layer: Eight rounds of keyed unbalanced Feistel cipher, using
a combination of S-box lookups, multiplications, data-dependent rotations,
additions, and xors to resist cryptanalytic attack.

4. Backward Core Layer: Eight rounds of keyed unbalanced Feistel cipher, using
a combination of S-box lookups, multiplications, data-dependent rotations,
additions, and xors to resist cryptanalytic attack.

5. Backward Mixing Layer: Eight rounds of unkeyed mixing operations making
extensive use of the MARS S-box.

6. Post-Whitening Layer: The block has 128 bits of key material subtracted
from its words modulo 232.



In this paper, we typically discuss MARS in terms of two different compo-
nents. The forward and backward core layers together make up the “crypto-
graphic core”; this core looks like a relatively conventional block cipher, and
appears to be reasonably resistant to attack. The pre-whitening, forward mixing
layer, backward mixing layer, and post-whitening layer together make up the
“wrapper,” which protects the cryptographic core from various kinds of attack
by requiring a large key guess or some clever cryptanalysis to gain access to
inputs and outputs of the core. This is a very different block cipher design than
is used in the other AES candidates. Among other things, this new design makes
it relatively difficult to determine how to come up with reduced-round variants
of the cipher to attack.

2.1 The Cryptographic Core

The strength of MARS resides fundamentally in the strength of the core rounds.
Both forward and backward core rounds use the same E function, which takes
one 32-bit input and two subkey words, and provides three 32-bit words. Each
output is combined into one of the three other words. The only difference between
forward and backward rounds is the order in which the outputs are combined
with the words. The core rounds’ strength is based primarily on mixing incom-
patible operations in the E function, and in their target-heavy Feistel structure,
which causes both linear and differential characteristics to quickly spread out into
every word. A full description of the MARS core rounds appears in [BCD+98].

The cryptographic core, with a few additional rounds, could stand alone as
a cipher; indeed, this would have been a fairly conventional design. Instead,
the MARS design team chose to use a smaller number of core rounds,1 but to
surround the core with a “wrapper.”

2.2 The Wrapper

The key addition/subtraction and mixing layers surround the core rounds, pre-
venting direct access to the core rounds from either the plaintext or the cipher-
text side. While the wrapper itself isn’t particularly resistant to cryptanalysis, it
is quite different in structure than the core, and it is designed to require guessing
of key material before an attacker can learn or control either inputs or outputs
to the core.

The mixing layers, like the core, have an unbalanced (target-heavy) Feistel
structure, but use only S-boxes and mixing of addition and xor.

We are a little puzzled by the decision to involve only 128 bits of key material
on each side of the core. This leaves the possibility of an attacker guessing his
way past either half of the wrapper, and thus seeing either input or output, with
a guess of only half the maximum key length. A small change to the design would
have involved 256 bits of key material on each side, and thus made partial key

1 Assuming the same level of performance, adding the wrapper requires reducing the
number of core rounds.



guessing worthless as a method of bypassing the wrapper. Below, we consider
some attacks that simply guess key material to bypass the wrapper entirely.
Inclusion of additional key material would apparently have stopped such attacks
at very little cost. While we understand the role of the “wrapper” in helping the
core resist attacks, we don’t understand why it couldn’t fulfill this role just as
well with another 128 bits of key material being combined in on each side. Such
a change to the design would have rendered many of the attacks we describe in
this paper impossible, at a low performance cost.

2.3 Reduced-Round MARS Variants

In a conventional cipher design, the rounds are all more-or-less the same except
for subkeys (and sometimes round constants). There is an obvious way to develop
weakened versions of such ciphers: simply reduce the number of rounds. Because
of the very different roles of the different kinds of rounds in MARS, however,
there are a number of reduced-round MARS variants that can teach us valuable
lessons about the ultimate strength or weakness of MARS.

Some reduced-round variants we have considered include:

Chopping Off the Beginning or End We evaluate the strength of most ci-
phers by considering versions with several of the first or last rounds omitted:
first the whitening layers and then several rounds of the mixing layers. This
isn’t a terribly rewarding way to look at MARS, since it omits important
parts of the cipher’s structure.

Core Rounds Only Because most of the cryptographic strength of MARS ap-
parently resides in the core rounds, it is reasonable to consider the strength
of these rounds independently. By developing such attacks, we learn how
to attack a fundamental component of the cipher, which may be of use in
mounting attacks on the full cipher in the future. For space reasons, most of
our analysis of the MARS core is described in another paper [KS00].

Full Cipher with Reduced Core Rounds An alternative way to evaluate
the strength of MARS is to consider the full cipher, but with fewer core
rounds. This allows us to see how the core rounds might be attacked, even
through the whitening and mixing layers that wrap the core rounds of the
cipher. It also gives us insights into how strong the core needs to be to allow
MARS to resist cryptanalysis.

Symmetric Reductions of the Cipher In the full MARS, there are four dif-
ferent types of rounds, each repeated eight times, for a total of 32 total
rounds. It is reasonable to consider symmetric reductions of this; for ex-
ample, we can consider a MARS variant with only three or four or six of
each kind of round. In some sense, this probably provides more information
about attacking the full MARS cipher than other kinds of weakened variant,
because all the components of the cipher are present.

We believe the last three can teach us many lessons about the ultimate
strength of MARS, both in terms of developing tools for attacking the full cipher,
and in terms of evaluating how close the best current attacks come to breaking
the full MARS.



3 Full Mixing with Reduced Core Rounds

In this section, we consider attacks on a MARS variant with the full “wrapper,”
but a reduced “cryptographic core.” These attacks demonstrate how it is possible
to mount attacks on a cryptographic core, even through the full wrapper, albeit
against a much-weakened core. These attacks penetrate by far the largest number
of rounds of the cipher, because they focus on the relatively weak mixing rounds,
rather than the much stronger core rounds.

Our attacks in this section are meet-in-the-middle attacks, requiring enor-
mous memory resources to implement, and thus purely academic. In the re-
mainder of this section, we will assume that one memory access to these huge
memory devices costs about the same amount of work as a partial encryption.
There are ways to trade off time for memory in these attacks, but they generally
aren’t useful in the context of these attacks.

3.1 A Straightforward Meet-in-the-Middle Attack on Five Core
Rounds

Consider MARS with full mixing and whitening layers, but with the core reduced
to three forward and two backward core rounds. This is vulnerable to a meet-
in-the-middle attack as follows:

1. Request eight plaintext/ciphertext pairs.
2. From the plaintext side, guess:

(a) The 128-bit pre-whitening key.
(b) The 62-bit first round key.
(c) K× and the low nine bits of K+ for the second round.
(d) This yields knowledge of A2 = D3 >>> 13. Compute this value for all

eight plaintexts, and put the resulting 256-bit value in a sorted list.
3. From the ciphertext side, guess:

(a) The 128-bit post-whitening key.
(b) The 62-bit last round key.
(c) K× and the low nine bits of K+ for the next-to-last round.
(d) This yields knowledge of A2 = D3 >>> 13. Compute this value for all

eight ciphertexts, and search the sorted list from the plaintext guesses
for a match on this 256-bit value.

This attack passes through 16 mixing rounds and 5 core rounds (thus 21
rounds total), at a cost of about 2232 half encryptions’ work (that is, 2229 work
for each of the eight texts), and about 2236 bytes of memory. The memory re-
quirements are totally unreasonable in practice, so this attack is purely academic.

Summary of Results
Attack On: Full Mixing Plus Five Core Rounds (21 total rounds)
Attack Type: Meet-in-the-Middle
Work: 2232 half-encryptions
Memory: 2236 bytes
Texts: Eight known plaintexts



3.2 The Differential Meet-in-the-Middle Attack

Here, we introduce the concept of a differential meet-in-the-middle attack. This
attack is related to the attack on the Mansour-Even construction by Daemen
[Dae95], the attack on DESX by Kilian and Rogaway [KR96], and the inside-out
attack of Wagner [Wag99].

In a standard meet-in-the-middle attack, we guess some key from the first
and second halves of the cipher, and then match on some middle value. For
example, an attack on double-DES starts by getting two plaintexts and their
corresponding ciphertexts. We then guess the key for the first DES encryption,
and for each such key guess, we compute the middle value from the two plaintexts
if they were encrypted under that key. This is stored in a sorted list. We then
guess the second DES key, and compute, for each guess, the middle value from
decrypting the two ciphertexts. These values are searched for in the sorted list.
When we find a matching value, it is very likely that this corresponds to the
right key.

This attack can be generalized. For example, it is not necessary that the
whole intermediate value to an encryption be computed; we can compute a
single bit from each direction, and then examine more plaintext/ciphertext pairs.
Similarly, if we can compute some checksum from intermediate values we reach
by key guesses from the plaintext and ciphertext sides, then we need never have
any knowledge of actual intermediate text values, as in [KSW99].

An extension to this idea allows the use of probability one differentials
through some intermediate part of the cipher. Consider the truncated differ-
ential (0, 0, 0, δ0) → (δ1, 0, 0, 0), which goes through three MARS core rounds
with probability one. The truncated differential works the same way in reverse,
naturally. This means that if we see a right input pair (a pair with differ-
ence (0, 0, 0, δ0)), we will also see a right output pair (a pair with difference
(δ1, 0, 0, 0)).

In a meet-in-the-middle attack, we must find some value that can be com-
puted from both the top (input) and the bottom (output) of the cipher with
a key guess, build a sorted list of these values, and look for pairs of keys that
match on these values.

With these differentials, we can compute such a value as follows:

1. Get about 250 known plaintexts and their corresponding ciphertexts. Label
each plaintext/ciphertext pair with an index number, 0..250 − 1.

2. Guess part of the key from the top, and compute intermediate states for
each plaintext given that key guess.

3. Sort the plaintext-intermediate values on their first three words.
4. Go through these values, and note each pair of texts that matches on their

first three words by their index numbers. List these in sorted order, lower
index number first in each pair. We expect about eight of these pairs.

5. Guess part of the key from the bottom, and compute intermediate states for
each ciphertext from that key guess. Sort the ciphertext-intermediate values
on their last three words.



6. Go through these values, and note each pair of texts that matches on their
last three words by their index numbers. List these in sorted order, lower
index number first in each pair. We expect about eight of these pairs.

7. Because the differential has probability one in both directions, there must
be the same number of these pairs, and the pairs must be identical, from
both plaintext and ciphertext. All we’ve done here is to list which pairs have
the right input and output xor differences to fit this truncated differential.

From this, we now have a “checksum” (the right pair indices) that we can
compute across three MARS core rounds. (We can easily restrict the checksum’s
size to four or eight matching pairs. The indices of the pairs must be put in
some standard order; for example, note each right input pair of indices in sorted
order, and then sort the pairs in order of each pair’s lowest index number.) This
checksum costs about 50 × 250 ≈ 256 work to find for any block of 250 texts.
We can thus do the following differential meet-in-the-middle attack on the full
MARS mixing layers plus five rounds of core:

1. Get 250 known plaintext/ciphertext pairs, and label each by an index number
as described above.

2. From the plaintext side, guess the pre-addition key and the first core round
key, a total of 2190 different key guesses.

3. For each key guess, take the predicted inputs to the second core round, and
compute the input right pair indices as described above. This takes about
256 work per key guess. Write the input right pair indices to a huge list,
one entry per key guess with the first eight right input pair indices in sorted
order.

4. Do the same thing from the bottom, continuing to add entries to the huge
list.

5. Sort the huge list, which will now have 2191 entries in it, and should thus
take about 191× 2191 ≈ 2199 work to sort.

6. Find the match between key guesses from the plaintext and ciphertext sides.

The total work done is thus 2190× 256× 2+ 2199 ≈ 2247. The attack recovers
all key material used in the pre- and post-addition/subtraction keys, and the
first and last core rounds’ values, as well. The total memory taken is 56× 2191

bytes.

Summary of Results
Attack On: Full Mixing Plus Five Core Rounds (21 total rounds)
Attack Type: Differential Meet-in-the-Middle
Work: 2247 partial encryptions
Memory: 2197 bytes
Texts: 250 known plaintexts

3.3 Tradeoffs Between Differential and Conventional
Meet-in-the-Middle Attacks

Note that the differential meet-in-the-middle attack requires slightly more work
but considerably less memory than the conventional meet-in-the-middle attack.



The advantage of the differential meet-in-the-middle attack is that it allows us
to pass through three core rounds for free; the disadvantage is in the cost of
detecting the property that passes through those three core rounds for free, and
the far larger number of known plaintexts required. This tradeoff determines
which attack is best-suited for a given cipher and attack model.

For reference, we will point out that the differential meet-in-the-middle at-
tacks can be used with less memory against smaller numbers of core rounds. For
example, we can use the same truncated differential and filtering process against
three rounds of core, dropping the total memory required to about 2133 bytes of
memory, at a work factor of about 2185 partial encryptions.

We have considered ways of extending the differential meet-in-the-middle
attack another round. Unfortunately, there are complications involved in using
either differentials with probability substantially lower than one, or in using
differentials that don’t run both directions with approximately equal probability.

3.4 Using Lower Probability Differentials

Consider a differential with probability 1/2 through several rounds of some ci-
pher, and assume we must find four input right pairs that are also output right
pairs. The problem is that we must have an exact match for the final sorting and
searching phase of the meet-in-the-middle attack to work. The only way we can
see to mount the attack in this situation is to generate and store many different
input right pairs, in hopes that one will consist of all successful differentials, and
thus, right output pairs.

The most efficient way to do this will probably be to find R right input pairs,
and add to the sorted list of input right pairs every possible 4-tuple of the pairs,
and then to do the same with the right output pairs. That will involve R choose
4 entries in the list, and we can expect it to work if we expect at least 4 of the R
input right pairs to result in output right pairs. The number of expected right
output pairs from R right input pairs is binomially distributed; for reference,
with nine right input pairs, we expect four right output pairs with probability
1/2. With twenty right input pairs, we have about a 0.94 probability of getting
some subset of four right input pairs.

This implies an unpleasant tradeoff between probability of the differential
used, and memory required for the attack. Consider the following numbers, which
describe the impact of using lower-probability differentials on the difficulty of the
attack. These numbers are for parameters that give the attack an approximate
probability of success of 1/2.

Memory vs. Probability Tradeoff
Prob. of Num. Right Input Num. Entries in Sorted
Characteristic Pairs Required List per Key Guess
0.9 5 5
0.5 9 126
0.1 47 178365
0.01 467 1.96× 109

0.001 ≈ 5000 2.60× 1013



As a rule, multiplying the number of entries in the sorted list per key guess
by N multiplies the size of that list by N , which multiplies the work involved in
handling it by N log N . We thus have great difficulty in using differentials with
very low probabilities.

Truncated Differentials with Substantially Lower Probabilities in the
Decryption Direction Normal differentials must have the same probability
in both directions. (This can be established by a simple counting argument.)
However, truncated differentials, which don’t specify the whole difference, can
have different probabilities in different directions. For example, in the MARS
forward core rounds, the following four-round differential has probability one:

(0, 0, 0, 231)→ (?, ?, (low 12 bits = 0x1000), 212)

However, this truncated differential cannot be run backwards with reasonable
probability. There are about 2211+2127 pairs of inputs that will yield this output
difference; of these pairs, only about 2−84 have input difference (0, 0, 0, 231). This
makes the attack much more costly; in fact, our best methods to mount the
attack in this case allow us to attack the full mixing and four rounds of core,
but not five rounds of core.

3.5 Boomerang Meet-in-the-Middle Attacks

We have also considered using the same kind of technique, but with boomerangs
[Wag99] (basically, 4-tuples with a differential relationship between all four texts
in the middle of the cipher) instead of individual ciphertexts. The problem of
detecting when we have the expected boomerangs is difficult; thus far, we have
been unable to find a way to do this that isn’t far costlier than the rest of the
attack can afford.

3.6 Other Techniques

In this section, we have focused on meet-in-the-middle attacks, because these are
the most obvious kinds of attacks to consider. However, there are other attacks
that might be useful against this kind of reduced-round MARS version. For
example, we might guess our way past the pre-addition key and forward mixing
layers, and look for a set of text pairs whose properties will show through eight
rounds of backward mixing layer. We haven’t yet found an effective way to do
this for all eight backward mixing rounds, but research is ongoing.

4 Symmetric Reductions of the Cipher

MARS consists of eight rounds each of four kinds of round functions. A natural
way to derive a reduced-round version of MARS to analyze is to consider k
rounds of each kind. For example, when k = 2, we have eight total rounds; when



k = 3, twelve; and when k = 4, sixteen. Cryptanalysis of such reduced-round
versions of the cipher allows us to learn important lessons about how to attack
a the general MARS structure.

Our attacks typically work as follows:

1. First, we choose N batches of input pairs, so that one such batch is likely to
consist of many pairs that have some differential after the mixing layer.

2. We then exploit some differential property that passes through the core
rounds, leaving a detectable differential property somewhere near the end of
the cipher.

3. Finally, we guess enough key material at the end to detect the detectable
property; the partial key guess that allows us to detect the differential prop-
erty is the correct one.

4.1 Attacking MARS Symmetrically Reduced to Eight Rounds

When k = 2 (eight rounds total), we have a cipher that is obviously not very
strong. It is still worthwhile to consider how this might be attacked, in part to
help develop techniques for attacking stronger versions. Recall that this cipher
consists of the key addition, the first two forward mixing rounds, two forward
core rounds, two backward core rounds, the last two backward mixing rounds,
and the key subtraction.

For this version, we can simply use one of the meet-in-the-middle attacks
discussed in the previous section, since there are only four rounds. However, we
can do much better than that.

Our attack works as follows:

1. We choose N batches of eight pairs each, where N ≤ 240. The batches
will be described below; one batch will have all eight pairs with difference
(0, 0, 0, 231) after the forward mixing layer.

2. In the right batch, this passes through the four core rounds with probability
one, leaving (?, ?, ?, 212).

3. We guess a few bits of subtraction key at the end of the cipher, and thus
distinguish the right batch from all the wrong batches. If we guess m bits
of effective key, we will need about 2m+44 partial decryptions to distinguish
the right batch from the wrong batches.

Choosing the Batches The first step to this attack is to get pairs of texts
through two forward mixing rounds, so that we have pairs with the difference
(0, 0, 0, 231) in the input to the first core round.

Our plan is to put a 27 difference in A, and an offsetting difference T in B,
and finally a difference to cancel A’s difference in D. To simplify the filtering
problem at the end, we will choose batches of eight pairs of texts, so that one of
the batches will give us eight right pairs through the forward mixing layer.



Choosing A, A∗ We show the first difference as being 27, in A, which passes
through the key addition with approximate probability 1/2, and then generates
expected difference T in the output to the first use of S-box s0 with probability
2−7. This then has probability of 2−8. This is based on simply looking for a pair
of S-box inputs, (u, u⊕ 27), such that s0[u]⊕ s0[u⊕ 27] = T . We look at all 128
such pairs, and use the difference with the lowest weight in its low 31 bits, for
reasons that will become clear momentarily.

For each batch, we hold the low eight bits of A constant. For one such value,
A, A∗ = A⊕ 27 will leave a 27 difference in A, and a T difference in the output
from the first s0.

Choosing B, B∗ The second difference is shown as being T , in B. This passes
through the key addition with approximate probability 2−w(T ), where w(T ) is
the Hamming weight of the low 31 bits of T . If we get T as the xor differences in
both line B and the s0 output from A, they cancel out with probability one. (We
can also consider a mod 232 difference T that passes through the key addition
with probability one, and cancels out the T additive difference in the s0 output
with probability about 2−w; naturally, there is no difference in the probabilities
involved.) Recall that we chose u, u⊕ 27 in A to minimize w(T ). Let us assume
that the minimum value for w(T ) is 12. Then, we have about 2−12 probability of
finding a pair B, B∗ such that their difference after the key addition is T , simply
by using the rule that B∗ = B ⊕ T . We can actually do somewhat better than
this in our selection of batches.

Building the Batches The third difference is shown as being 231, in D. This
difference passes through all xors and additions with probability one.

We can thus build batches of (A, B, C, D), (A∗, B∗, C, D∗) pairs. Each batch
of eight pairs contains the same low-order eight bits for A and all the same bits
for B. There are thus 224 × 232 × 232 = 288 possible pairs for each batch, and
there are 240 batches possible, and about 212×28 = 220 expected to be necessary.

We build 220 batches of eight pairs, for a total of 224 chosen plaintexts.

Guessing Key at the End After the core rounds, input pairs with difference
(0, 0, 0, 231) must have output difference (?, ?, ?, 212). We must thus learn the
value of D in the output from the core rounds. To do this, we must guess about
12 bits of the subtractive key for C, and all of the subtractive key for D. Using
these guesses, we can derive the values for D after the core rounds. We must do
this for all 224 texts. We thus have total work of about 224 × 244 = 268 partial
decryptions. (We suspect that there are better attacks for k = 2, but that these
attacks don’t generalize for larger k values.)

Summary of Results
Attack On: MARS Symmetrically Reduced to Eight Rounds
Attack Type: Differential
Work: 268 partial decryptions
Memory: 229 bytes
Texts: 225 chosen plaintexts



4.2 Extending the Attack to k = 3 (Twelve Rounds)

We now consider an attack on MARS symmetrically reduced to 12 rounds. Again,
the cipher is obviously not very strong. However, the structure is beginning to
add difficulties to the attack. We use a boomerang-amplifier to cover the six core
rounds with probability 2−96 for each pair of pairs with difference (0, 0, 0, 231)
into the core rounds. With about 250 right pairs into the core rounds’ input, we
expect to see about four right pairs of pairs. These pairs will then pass through
six more rounds, and can be detected by examining the whole output blocks
from all the texts.

Requesting Inputs We use the same input structure as before, but instead of
requesting eight pairs for each batch, we request 250 pairs for each batch.

The Boomerang Amplifier The boomerang-amplifier attack is introduced in
[KS00], and is based on the concept of “boomerangs,” as described in [Wag99].
The basic idea of the attack involves a property occurring in pairs of pairs of
texts.

For the MARS core, we use the batches of input pairs described above to try
to find a batch of 250 pairs of texts, all of which will have difference (0, 0, 0, 231)
in the input to the first core round. Since there is a probability one differential
for the core rounds, (0, 0, 0, 231) → (231, 0, 0, 0), this means that all 250 pairs of
the batch will have difference (231, 0, 0, 0) after three core rounds.

Consider the set of 250 of these pairs in the batch. We will refer to these
pairs as ((W0, W

∗

0 ), (W1, W
∗

1 ), ..., (Wi, W
∗

i )) in input to the core rounds, and as
((X0, X

∗

0 ), (X1, X
∗

1 ), ..., (Xi, X
∗

i )) after round three. There are about 299 pairs
of pairs. That is, there are about 299 different ways to choose two of these pairs
out of this batch and look at them together; for example, ((Xi, X

∗

i ), (Xj , X
∗

j )).
Now, consider the difference (0, 0, 0, a), where a is unknown. For any pair of
texts to have such a difference, they must collide in 96 bits; the difference thus
is expected to occur in 2−96 of all random pairs of texts. Thus, if Xi, Xj can
be considered as a more-or-less random pair of texts (and they apparently can),
then the probability that each i, j pair will have this difference is 2−96, and since
we have 299 such pairs, we expect about eight pairs Xi, Xj with this difference.
However, we know that Xi⊕X∗

i = (231, 0, 0, 0) for all i. This lets us algebraically
show that when Xi ⊕ Xj = (0, 0, 0, a), X∗

i ⊕ X∗

j must also equal (0, 0, 0, a).
This boomerang structure thus amplifies the effect of the low-probability event,
making it detectable, since when this happens we get two pairs of texts that
follow the truncated differential (0, 0, 0, a)→ (b, 0, 0, 0) over three rounds.

Distinguishing the Right Key Guess To distinguish the right key guess,
we examine the result of trial partial decryption of a whole batch of pairs at
a time. Let Yi, Y

∗

i be the results of encrypting input pair Wi, W
∗

i through the
whole cryptographic core in some batch. We build a list of all the Yi and Y ∗

i

values. We then sort this list on its low-order 96 bits. Next, we go through the



list, and for each pair Yi, Yj or Yi, Y
∗

j that matches in those last 96 bits, the pair
i, j is added to a sorted list of pairs that collided. Finally, we count the number
of times each i, j appears in the list. When we see two or more instances of the
same i, j occurring twice, we are extremely likely to have a correct key guess.

Recall that we expect eight pairs i, j such that Xi ⊕ Xj = X∗

i ⊕ X∗

j =
(0, 0, 0, a) These will inevitably lead to eight pairs i, j such that Yi ⊕ Yj =
(b, 0, 0, 0) and Y ∗

i ⊕ Y ∗

j = (b′, 0, 0, 0). (The property works just as well if the
collision occurs between Xi and X∗

j , naturally.)
The probability of any given i, j pair having this property after a random

permutation has been applied to it is 2−192 Since there are 299 pairs in each
batch, we expect no such i, j pairs. The probability of seeing two such pairs in a
batch (that is, among 299 potential pairs) is about 2−186. We will be examining
220 different batches, each under 2128 different keys, so we’ll have 2148 total
batches to examine in this way. So with overwhelming probability, there will be
only one partial key guess that will give us two or more such i, j pairs.

Summary of the Attack The attack on 12 rounds (k = 3) makes use of a
boomerang amplifier. It requires about 220 × 248 × 2 = 269 texts, about 225

bytes of random-access memory (to hold a batch of texts at a time), and about
273 bytes of sequential memory to store all the ciphertexts so we can apply
our guesses to them. The attack also requires about 2128 × 269 = 2197 partial
decryptions, each consisting of about one quarter of the cipher.

Summary of Results
Attack On: MARS Symmetrically Reduced to 12 Rounds
Attack Type: Boomerang Amplifier
Work: 2197 partial decryptions
Memory: 273 bytes
Texts: 269 chosen plaintexts

5 Conclusions

In this paper, we have developed several new attacks on reduced-round versions
of MARS. While none of these attacks is able to break the full cipher, we feel
that these results provide valuable insights into the security of MARS. We regard
these results as preliminary, and would be unsurprised to see moderate improve-
ments in any of our attacks. However, if major improvements in the results are
possible, we expect that they will require new techniques. Below, we describe
some ideas for additional attacks on reduced-round MARS variants.

5.1 Lessons from the Analysis

The results in this paper show the overwhelming importance of the strength of
the MARS cryptographic core; we can attack the full mixing layers with only
five core rounds, a total of 21 rounds, but can currently attack no more than 11
core rounds.



Our results also show how the “wrapper” layers protect the core rounds from
attacks that require large numbers of chosen plaintexts or chosen ciphertexts.

Finally, our results demonstrate that, when evaluating a fundamentally new
cipher design, it is important to be able to innovate—to develop new techniques
to attack the cipher, rather than merely reusing the standard differential and
linear attacks. Because MARS is such an unconventional block cipher, we needed
to develop new attacks to get very far in our analysis.

5.2 Why This Is Important

The only way we know of actually determining the strength of a cipher is to try
to attack it, including reduced-round versions. Proofs of security have proven
unreliable; security arguments based on estimates of the best differential and
linear characteristics tell us little about what other attacks may be done; design
principles that protect against some attacks sometimes allow new attacks in their
place; as in Square, where the use of the MDS matrix made differential attacks
extremely difficult, while allowing Knudsen’s dedicated attack. The history of
cryptography is littered with ciphers whose designers were convinced of their
security, but whose attackers were not. Without a solid understanding of the
security of each of the AES finalists, NIST and the cryptographic community
will likely make a final decision on AES based only on performance.

In this paper, we have done some very preliminary analysis of two versions
of MARS with reduced rounds. MARS is a complicated enough design that
beginning to analyze it involves a significant investment of time (though even
conceptually very simple ciphers seem to have much the same property). We
hope to see our work spur others to go beyond the very preliminary results in
this paper.

5.3 Ideas for Future Attacks

We have spent considerable time trying to get boomerangs to work within meet-
in-the-middle attacks. A “boomerang-in-the-middle” attack would go through
six rounds for free, and thus would be quite powerful. Similarly, there is a seven-
round impossible differential through the core rounds; we are as yet unable to
find a way to use either of these ideas in a meet-in-the-middle attack. The un-
derlying problem in the case of the boomerang-in-the-middle attack is that a
boomerang 4-tuple can be identified only by considering both input and output
simultaneously. We have not been able to find a way around this problem so
far. The underlying problem with the impossible differential meet-in-the-middle
attack is that we can rule out candidate key guesses only by (again) examining
right pairs for both input and output simultaneously. We are still looking for a
way around this problem, or for a proof than none exists.

In our differential meet-in-the-middle attacks, we dealt with the mixing layers
by simply guessing our way past them. We expect significant improvements to
the attacks are possible with more analysis of the mixing layers, particularly in
terms of partial guessing of key material. We have spent far more time analyzing



the core rounds than the unkeyed mixing layers, and so this is a good area for
further research.

Attacking the symmetrically reduced version of the cipher with k = 4 ap-
parently requires a better way of choosing inputs than the input structure we
discuss above. We hope to find a better input structure, or a better property
to push through all eight core rounds. Previous attempts to attack k = 4 have
exceeded 2256 work, usually due to the huge plaintext requirements.

It may also be worthwhile to attack variants of MARS that cut off in the
middle (after 12 or 16 rounds total); we have some ideas in this direction.

Finally, in future work, we hope to examine how the MARS key schedule
functions with various reduced-round variants.
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Impossible Di�erential on 8-Round

MARS' Core

Eli Biham� Vladimir Furmany

March 15, 2000

Abstract

MARS is one of the AES �nalists. The up-to-date analysis of MARS

includes the discovery of weak keys, and Biham's estimation that a 12-

round variant of MARS is breakable. This estimation was partly founded

based on a 7-round impossible di�erential of the core of MARS. However,

no such attack was presented to-date. In this paper we present two new

longer impossible di�erentials of 8 rounds.

1 Introduction

MARS[5] is a block cipher designed by IBM as a candidate for the Advanced
Encryption Standard selection process, and was accepted as one of the �ve
�nalists.

The up-to-date analysis of MARS includes weak keys, and Biham's estima-
tion that MARS reduced to 12 rounds can be attacked[2]. This estimate was
partially based on the existence of a 7-round impossible di�erential of MARS[1]
(see [3, 4, 6] for more details on attacks using impossible di�erential ). In this
paper we introduce two 8-round impossible di�erentials of MARS' core.

2 An 8-Round Impossible Di�erential

We denote binary numbers with a subscript b, and a 32-bit binary numbers
whose all bits except of bit i are all zero, and only bit i is one by �i = 031�i110ib
(i.e., 1<<i in C). We also denote a string of 0's (and 1's) of variable lengths
(including zero length) by 0�b (and 1�b) and the complement of a bit-value x by
�x (�x = 1� x).

�Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000,
Israel. biham@cs.technion.ac.il, http://www.cs.technion.ac.il/�biham/.

yComputer Science Department, Technion - Israel Institute of Technology, Haifa 32000,
Israel. vfurman@cs.technion.ac.il.
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The 7-round impossible wordwise (truncated) di�erential of MARS is of the
form

(0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0)

1 round

!= (0; 0; 0;W )
3 rounds
! (Z; 0; 0; 0)

where W , X, Y , and Z are non-zero, all pairs with di�erences of the form
(0; 0; 0; X) must have di�erences of the form (Y; 0; 0; 0) after 3 rounds, and
similarly the di�erences (0; 0; 0;W ) always cause di�erences (Z; 0; 0; 0) after 3
rounds. However, there are no pairs with di�erences (Y; 0; 0; 0) such that the
di�erences become (0; 0; 0;W ) after one round.

We observe that an extension of this impossible di�erential shows that when
W = �31 the intermediate one-round impossible di�erential can be replaced by

a two-round impossible di�erential (Y; 0; 0; 0)
2 rounds

!= (0; 0; 0; �31), for some
values of Y , leading to the following 8-round impossible di�erential for some
values of X

(0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0)

2 rounds

!= (0; 0; 0; �31)
3 rounds
! (�31; 0; 0; 0):

In the following we describe the 3-round di�erentials with probability 1.
Then, we describe why the 2-round intermediate di�erential is impossible, and
for which values of Y . The conjunction of the various di�erentials to the 8-round
impossible di�erentials is described at the end of this section.

2.1 The 3-Round Di�erentials with Probability 1

We denote additive di�erence by �, and XOR-di�erences by �xor. In every
round of MARS' core, every single 32-bit input word B, C and D in
uences
only one 32-bit output word (on A, B and C respectively). Thus if we take
the input di�erence of one of the foregoing to be non-zero (e.g., �B 6= 0) and
all others including �A to be 0 (e.g., �A = �C = �D = 0), then we receive
the output di�erence with only one non-zero di�erence. In particular, if we
take some input di�erence (0; 0; 0; X) where X is non-zero, we get the di�erence
(0; 0; X1; 0) for some non-zero X1 after one round, then the di�erence becomes
(0; X2; 0; 0) for some non-zero X2 after the next round. Finally, the di�erence
becomes (Y; 0; 0; 0) for some non-zero Y after the third round. In total we get
a 3-round truncated di�erential (0; 0; 0; X)! (Y; 0; 0; 0) with probability 1.

Note that, if the least signi�cant bits of X have the form 1 0::0
|{z}

i

(i � 0), then

the least signi�cant bits of Y have the same form. It follows from the fact that
the least signi�cant bits of such form are preserved in both additive and XOR
di�erences.

In the particular case X = �31 we always get Y = �31: We start with the
following di�erence (0; 0; 0; �31), i.e., �A0 = �B0 = �C0 = 0;�D0 = �31. Since
�A0 = 0, the mixings to B, C, and D have zero di�erences. Since the di�erence

2



c c c

?

?

?
?

B
B
B
B
B
BB

�
�
��

�
��

�
��

-

-
-
-

........................
..................
............ ?

?

?
?

B
B
B
B
B
BB

�
�
��

�
��

�
��

-

-
-
-

........................
..................
............ ?

?

?
?

B
B
B
B
B
BB

�
�
��

�
��

�
��

-

-
-
-

........................
..................
............

ROL13 ROL13 ROL13

�A3 = �31

�B3 = 0

�C3 = 0

�D3 = 0

0

0

0

0

0

0

�31

�31

E-function

�A0 = 0

�B0 = 0

�C0 = 0

�D0 = �31

�L1 = 0

�M1 = 0

�R1 = 0

�L2 = 0

�M2 = 0

�R2 = 0 �R3 = 0

�M3 = 0

�L3 = 0

E-functionE-function

Figure 1: 3-round di�erential
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Figure 2: Round i in forward mode on MARS core

in �D is only in the most signi�cant bit, this di�erence remains only in the most
signi�cant bit independently of whether the mixing operation is performed by
addition or by XOR. Therefore, we get the di�erence (�A1;�B1;�C1;�D1) =
(0; 0; �31; 0) after one round with probability 1. This can be repeated three
times, and we get the di�erence (�31; 0; 0; 0) with probability one after 3 rounds,
as shown in Figure 1. Notice, that this di�erential holds in all the rounds of the
core including the forward mode, the backward mode and even on the boundary
of both.

2.2 The 2-Round Impossible Di�erential

In this section we describe the 2-round impossible di�erential of MARS core.
Let (�A0;�B0;�C0;�D0) = (Y; 0; 0; 0), where Y is an unknown value and

(�A2;�B2;�C2;�D2) = (0; 0; 0; �31). We want to �nd the values of Y that
give impossible di�erential on a 2-round MARS core. We look for these values
separately in the cases of forward and backward modes.

2.2.1 Forward Mode

Figure 2 outlines one round of the forward mode.

3
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� We know that Ri = ((Ai�1 <<< 13) �K) <<< 10 = (Di �K) <<< 10,
where K is an unknown subkey. Because, the key used in this stage is odd
and �D2 = �31, we have that �xorR2 = �9.

� We have �xorR2 = �9 and �C2 = �xorC2 = 0, so �xorD1 = �9. Thus,
we receive �xorA0 = �28.

� �xorA0 = �28 ) �A0 = aaa1 0::0
|{z}

28

b, where a is either 0 or 1 (i.e., �A0 =

��28).

In total, we get that all values of Y , with possible exception of ��28, give
impossible di�erentials on a 2-round MARS core in the forward mode.

2.2.2 Backward Mode

The Figure 3 outlines the backward mode round.

� �D2 = �31 ) �xorD2 = �31 ) �xorA1 = �18:

� �B0 = 0 ) �xorB0 = 0; Together with �xorA1 = �18 we get that
�xorR1 = �18:

� Ri = ((Ai�1 <<< 13) � K) <<< 10 = (Di � K) <<< 10, so �xor(Di �
K) = �xorRi >>> 10. So �xor(D1 � K) = �18 >>> 10 = �8, and
�(D1 �K) = �D1 �K = ��8. Because, the key used in this stage is odd,
we have two important conclusions:

1. �D1 has 10::0
| {z }

9

b as a 9 least signi�cant bits.

2. We may look at this as (�D1=2
8)�(K mod 224) = �1. So the 24 least

signi�cant bits of the key are equal to the inverse of �(�D1=28) mod
224.

4



� On the other hand:

L2 = (S[9 least signi�cant bits of (A1+K+)]�(R2 >>> 5)�R2) <<< (5
least signi�cant bits of R2),

where K+ is an unknown subkey.

{ �xorA1 = �18 so the 9 least signi�cant bits of �A1 are 0, then �(9
least signi�cant bits of (A1+K

+)) = 0, so �S = 0 and thus �xorS =
0.

{ As in forward mode, we get �xorR2 = �9, so �xor(R2 >>> 5) = �4.

{ �xor(S � (R2 >>> 5)�R2) = 0::0
|{z}

22

1000010000b.

{ A variable rotation is performed on L2 by a number of bits derived
from the 5 least signi�cant bits of R2. Because �xorR2 = �9 both
rotations are by the same number of bits (denoted by rl), so we have:

�xorL2 = 0::0
|{z}

22

1000010000b <<< rl:

{ After the rotation, the result is always of the form:

�xorL2 = 0::0
|{z}

30�i�j

1 0::0
|{z}

j

1 0::0
|{z}

i

b;

where j = 4 or 26, and i = 0::30� j.

{ Thus we have �L2 = b::b
|{z}

30�i�j

�a a::a
|{z}

j

1 0::0
|{z}

i

b, where a,b are unknown

bit values.

� Because �L2+�D1 = �C2 = 0, we have that �D1 = �b::�b
|{z}

30�i�j

a �a::�a
|{z}

j

1 0::0
|{z}

i

b.

But we know that �D1 has 10::0
| {z }

9

b as the 9 least signi�cant bits, so only

a single possibility remains:

�D1 = �b::�b
|{z}

18

a �a::�a
|{z}

4

1 0::0
|{z}

8

b:

Observation: �D1 may have four possible values:

{ 0::0
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b and 1::1
|{z}

18

0 1::1
|{z}

4

1 0::0
|{z}

8

b (i.e., � 0::0
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b).

{ 0::0
|{z}

18

0 1::1
|{z}

4

1 0::0
|{z}

8

b and 1::1
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b (i.e., � 0::0
|{z}

19

1::1
|{z}

4

1 0::0
|{z}

8

b).
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We have two pairs of possible values for �D1, and thus there are only two
possible values (one for each pair) for the 24 least signi�cant bits of the key
used in �rst round for multiplication (according to the conclusion in the
beginning of this section(2.2.2)). These key values in hexadecimal form
are f07c1fx (for �D1 = � 0::0

|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b) and ef7bdfx (for �D1 =

� 0::0
|{z}

19

1::1
|{z}

4

1 0::0
|{z}

8

b).

� It is known that sequences of the form 01�1b or of the form 10�1b in the
additive di�erence (�) are translated to the sequence of the form either
100�1�1b or 01�1b in the corresponding XOR di�erence (�xor)1. Thus we
have two options:

1. �xorD1 = 0�1�
|{z}

18

100�1�
| {z }

5

1 0::0
|{z}

8

b

2. �xorD1 = 0�1�
|{z}

18

01::1
| {z }

5

1 0::0
|{z}

8

b

� �xorA0 = �xorD1 >>> 13, so there are two possible values for �xorA0:

1. �xorA0 = 00�1�
| {z }

4

1 0::0
|{z}

8

0�1�
|{z}

18

1b

2. �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

18

0b

� In the �rst case, �xorA0 is odd, so the �A0 is odd too, and we cannot
show that this case is impossible. In the second case, �xorA0 is even so the
�A0 is even too, and therefore we can divide this case in two sub-cases:

1. There is at least one 1 in 0�1�
|{z}

18

b, so we have 10b as two least signi�cant

bits in �xorA0 and �A0. This sub-case is impossible (see Appendix A
for a detailed proof).

1For checking this fact, look at di�erent cases of such sequence with and without carry
from previous bits. For example, we take �I = 10::01b, i.e., I

1 � I
2 = 10::01b. Then either:

1. The least signi�cant bit of I
1 is 1: then the least signi�cant bit of I

2 must be 0, and
thus there is no carry to the next bit. On the other hand, the next bit in the di�erence
is 0. Combining these together we conclude that the next bit in I1 and the next bit in
I
2 must be equal. Continuing in this way we get that �xorI = 10::01b.

2. The least signi�cant bit of I1 is 0: then the least signi�cant bit of I2 must be 1, and
thus there is a carry to the next bit. On the other hand, the next bit in the di�erence
is 0. Combining these together we conclude that the next bit in I1 and the next bit in
I
2 have di�erent values. Continuing in this way we get that the corresponding bits in

I
1 and in I

2 are di�erent till either: 1) in some bit I
1 has 1 and in I

2 has 0, or 2) we
reach the most signi�cant bits with di�erence 1 and, due to existence of a carry from
the previous bits, this bit in I

1 and I
2 must have the same value. So �xorI is equal

either to 100�1�11b or to 01::11b.

6



2. There are no 1's in 0�1�
|{z}

18

b, so �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

27

b, and �A0 has

1 0::0
|{z}

27

b as 28 least signi�cant bits. For this sub-case, we cannot show

that it is impossible.

Thus, we have a 2-round impossible di�erential for any even Y whose 28
least signi�cant bits are not 10::0

| {z }

28

b. For other Y 's we cannot say anything

whether there exist impossible di�erentials. However, if the di�erentials are not
impossible for some Y , then the 24 least signi�cant bits of the multiplication
key used in the �rst round of the di�erential are either f07c1fx or ef7bdfx.

2.3 Conjunction to the 8-Round Impossible Di�erentials

Wewant now to check what values ofX give the 8-round impossible di�erentials.
We describe the two cases in which the two middle rounds work in forward mode
and in backward mode.

For forward mode, we have a 2-round impossible di�erential for any value of

Y , except of��28. Because in (0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0) the relation between

X to Y passes through two additions and one exclusive-or operation, the 29
rightmost bits remains 1 0::0

|{z}

28

b and the 3 most signi�cant bits may get any value.

So, we have the 8-round impossible di�erentials (0; 0; 0; X)
8 rounds

!= (�31; 0; 0; 0)
for all X, except of those with 10::0

| {z }

29

b as the 29 least signi�cant bits.

For backward mode, we have a 2-round impossible di�erential for any even
Y , except of those with 10::0

| {z }

28

b as 28 least signi�cant bits. As in forward mode,

in (0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0) the 28 least signi�cant bits remains 10::0

| {z }

28

b and

the 4 most signi�cant bits may get any value. So we have the 8-round impossible

di�erentials (0; 0; 0; X)
8 rounds

!= (�31; 0; 0; 0) for any even X, except of those with
10::0
| {z }

28

b as the 28 least signi�cant bits.

3 Another 8-Round Impossible Di�erential

There is another 8-round impossible di�erential on MARS' core:

(0; 0; 0; �31)
3 rounds
! (�31; 0; 0; 0)

3 rounds

!= (0; 0; X; �31)
2 rounds
! (Y; �31; 0; 0);

7



where the 3 middle round are in backward mode, and X,Y are non-zero val-
ues such that X must have 0::0

|{z}

24

b as the least signi�cant bits, and the 8 most

signi�cant bits of X may have any value (except of all zeroes). Thus, as was
shown in the previous section, Y must have 0::0

|{z}

24

b as the least signi�cant bits,

and the 8 most signi�cant bits may have any value (except of all zeroes). The
explanation for this di�erential is similar to the explanation described earlier.
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A Impossible di�erential for Y , with 10b as least

signi�cant bits, in backward mode on MARS

core.

In this appendix we show that the sub-case of backward mode where �xorA0 =
1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

17

10b, mentioned in section 2.2.2, is impossible.

� As in forward mode �D2 = �31 ) �xorR2 = �9.

� �xorR2 ��xorB1 = �xorA2 = 0, so �xorB1 = �xorR2 = �9.

� �xorB1 = �9 ) �B1 = a::a
|{z}

22

1 0::0
|{z}

9

b, where a is unknown bit value.

� �C0+�M1 = �B1 = a::a
|{z}

22

1 0::0
|{z}

9

b. Because �C0 = 0, �M1 = a::a
|{z}

22

1 0::0
|{z}

9

b.

� �M1 = a::a
|{z}

22

1 0::0
|{z}

9

b ) �xorM1 = 0�1�
|{z}

22

1 0::0
|{z}

9

b.

� We know that Mi = (Ai�1 +K) <<< (low 5 bits of (Ri >>> 5)).
However, because �xorR1 = �18, both rotations are by the same number
of bits (denoted rm), and because �K = 0 we have

�M1 = �A0 <<< rm

or
�A0 = �M1 >>> rm:

� We know that �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

17

10b. It gives us that �A0 =

x
|{z}

4

�a a::a
|{z}

9

z
|{z}

17

10b, where x; z are unknown binary word and a is unknown

bit value.

� The �A0 has 10b as 2 least signi�cant bits, so the only one possibility
for rm to be 8. Thus �xor(M1 >>> 8) = 0::0

|{z}

8

0�1�
|{z}

22

10b, and therefore,

�(M1 >>> 8) = b::b
|{z}

8

y
|{z}

22

10b, where b is an unknown bit value and y is

unknown binary word.

� Now we have �(M1 >>> 8) = b::b
|{z}

8

y
|{z}

22

10b and �A0 = x
|{z}

4

�a a::a
|{z}

9

z
|{z}

17

10b.

These must be equal. However, the bit 26th of the later di�er than bit
27th, while bits 26th and 27th of the former are equal. This contradicts
the fact that both values must be equal.
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Abstract. Serpent is a 32-round AES block cipher �nalist. In this paper
we present several attacks on reduced-round variants of Serpent that re-
quire less work than exhaustive search. We attack six-round 256-bit Ser-
pent using the meet-in-the-middle technique, 512 known plaintexts, 2246

bytes of memory, and approximately 2247 trial encryptions. For all key
sizes, we attack six-round Serpent using standard di�erential cryptanaly-
sis, 283 chosen plaintexts, 240 bytes of memory, and 290 trial encryptions.
We present boomerang and ampli�ed boomerang attacks on seven- and
eight-round Serpent, and show how to break nine-round 256-bit Serpent
using the ampli�ed boomerang technique, 2110 chosen plaintexts, 2212

bytes of memory, and approximately 2252 trial encryptions.

1 Introduction

Serpent is an AES-candidate block cipher invented by Ross Anderson, Eli Biham,
and Lars Knudsen [ABK98], and selected by NIST as an AES �nalist. It is
a 32-round SP-network with key lengths of 128 bits, 192 bits, and 256 bits.
Serpent makes clever use of the bitslice technique to make it e�cient in software.
However, because of its conservative design and 32 rounds, Serpent is still three
times slower than the fastest AES candidates [SKW+99].

In the Serpent submission document [ABK98], the authors give upper bounds
for the best di�erential characteristics through the cipher. However, no speci�c
attacks on reduced-round versions of the cipher are presented. In this paper we
consider four kinds of attacks on reduced-round variants of Serpent: di�erential
[BS93], boomerang [Wag99], ampli�ed boomerang [KKS00], and meet-in-the-
middle. To the best of our knowledge, these are the best published attacks against
reduced-round versions of Serpent.1

The current results on Serpent are as follows (see Table 1):

1. A meet-in-the-middle attack on Serpent reduced to six rounds, requiring 512
known plaintext/ciphertext pairs, 2246 bytes of random-access memory, and
work equivalent to approximately 2247 six-round Serpent encryptions.

? Part of this work was done while working for Counterpane Internet Security, Inc.
1 Dunkelman cryptanalyzed a Serpent variant with a modi�ed linear transformation
in [Dun99].



Rounds Key Size Complexity Comments
[Data] [Work] [Space]

| | | | | no previous results
6 256 512 KP 2247 2246 meet-in-the-middle (x6)
6 all 283 CP 290 240 di�erential (x3.2)
6 all 271 CP 2103 275 di�erential (x3.3)
6 192 & 256 241 CP 2163 245 di�erential (x3.4)
7 256 2122 CP 2248 2126 di�erential (x3.5)
8 192 & 256 2128 CPC 2163 2133 boomerang (x4.2)
8 192 & 256 2110 CP 2175 2115 amp. boomerang (x5.3)
9 256 2110 CP 2252 2212 amp. boomerang (x5.4)

KP | known plaintext, CP | chosen plaintext, CPC | chosen plaintext/ciphertext.

Table 1. Summary of attacks on Serpent. Work is measured in trial encryptions; space
is measured in bytes.

2. A di�erential attack on Serpent reduced to six rounds, requiring 283 chosen
plaintexts, 240 bytes of sequential-access memory, and work equivalent to
approximately 290 six-round Serpent encryptions.

3. A di�erential �ltering attack on Serpent reduced to seven rounds, requiring
2122 chosen plaintexts, 2126 bytes of sequential-access memory, and work
equivalent to approximately 2248 six-round Serpent encryptions.

4. A boomerang attack on Serpent reduced to eight rounds, requiring all 2128

plaintext/ciphertext pairs under a given key, 2133 bytes of random-access
memory, and work equivalent to approximately 2163 eight-round Serpent
encryptions.2

5. An ampli�ed-boomerang key-recovery attack on Serpent reduced to eight
rounds, requiring 2110 chosen plaintexts, 2115 bytes of random-access mem-
ory, and work equivalent to approximately 2175 eight-round Serpent encryp-
tions.

6. An ampli�ed-boomerang key-recovery attack on Serpent reduced to nine
rounds, requiring 2110 chosen plaintexts, 2212 bytes of random-access mem-
ory, and work equivalent to approximately 2252 nine-round Serpent encryp-
tions.

The remainder of this paper is organized as follows: First, we discuss the
internals of Serpent and explain the notation we use in this paper. We then
use di�erential, boomerang, and ampli�ed boomerang techniques to break up
to nine rounds of Serpent. Subsequently we discuss a six-round meet-in-the-
middle attack on Serpent. We then discuss some observations on the Serpent key
schedule. We conclude with a discussion of our results and some open questions.

2 Because this eight-round boomerang attack requires the entire codebook under a
single key, one can consider this attack a glori�ed distinguisher that also recovers
the key.
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2 Description of Serpent

In this document we consider only the bitsliced version of Serpent. The bitsliced
and non-bitsliced versions of Serpent are functionally equivalent; the primary
di�erence between the bitsliced and non-bitsliced versions of Serpent are the
order in which the bits appear in the intermediate stages of the cipher. Full
details of the bitsliced and non-bitsliced version of Serpent are in [ABK98].

2.1 The Encryption Process

Serpent is a 32-round block cipher operating on 128-bit blocks. In the bitsliced
version of Serpent, one can consider each 128-bit block as the concatenation of
four 32-bit words.

Let Bi represent Serpent's intermediate state prior to the ith round of en-
cryption. Notice that B0 = P and B32 = C, where P and C are the plaintext
and ciphertext, respectively.

Let Ki represent the 128-bit ith round subkey and let Si represent the ap-
plication of the ith round S-box. Let L be Serpent's linear transformation. Then
the Serpent round function is de�ned as:

Xi  Bi �Ki

Yi  Si(Xi)
Bi+1  L(Yi) i = 0; : : : ; 30
Bi+1  Yi �Ki+1 i = 31

Serpent uses eight S-boxes S0; : : : ; S7. The indices to S are reduced modulo
8; i.e., S0 = S8 = S16 = S24. The Serpent S-boxes take four input bits and
produce four output bits. Consider the application of an S-box Si to the 128 bit
block Xi. Serpent �rst separatesXi into four 32-bit words x0, x1, x2, and x3. For
each of the 32-bit positions, Serpent constructs a nibble from the corresponding
bit in each of the four words, with the bit from x3 being the most signi�cant
bit. Serpent then applies the S-box Si to the constructed nibble and stores the
result in the respective bits of Yi = (y0; y1; y2; y3).

The linear transform L on Yi = (y0; y1; y2; y3) is de�ned as

y0  y0n 13

y2  y2n 3

y1  y0 � y1 � y2

y3  y2 � y3 � (y0 � 3)

y1  y1n 1

y3  y3n 7

y0  y0 � y1 � y3

y2  y2 � y3 � (y1 � 7)

y0  y0n 5

y2  y2n 22

Bi+1  (y0; y1; y2; y3)

3



wheren denotes a left rotation and � denotes a left shift.
When discussing the internal state of the Serpent, we will often refer to

diagrams such as

x0
x1
x2
x3

where Xi is the internal state under inspection and Xi = (x0; x1; x2; x3). As
suggested by this diagram, we will occasionally refer to an active S-box as a
\column."

2.2 The Key Schedule

Serpent's key schedule can accept key sizes up to 256 bits. If a 256-bit key is
used, Serpent sets the eight 32-bit words w�8; w�7; : : : ; w�1 to the key. If not,
the key is converted to a 256-bit key by appending a `1' bit followed by a string
of `0's.

Serpent computes the prekeys w0; w1; : : : ; w131 using the recurrence

wi  (wi�8 � wi�5 � wi�3 � wi�1 � �� i)n 11

where � is 0x9e3779b9.
Serpent then computes the 128-bit subkeys Kj by applying an S-box to the

prekeys w4j ; : : : ; w4j+3:

K0  S3(w0; w1; w2; w3)

K1  S2(w4; w5; w6; w7)

K2  S1(w8; w9; w10; w11)

K3  S0(w12; w13; w14; w15)

K4  S7(w16; w17; w18; w19)

...

K31  S4(w124; w125; w126; w127)

K32  S3(w128; w129; w130; w131)

3 Di�erential Cryptanalysis

Di�erential cryptanalysis, �rst publicly discussed by Biham and Shamir [BS93],
is one of the most well-known and powerful cryptanalytic techniques. Although
the original Serpent proposal provided theoretical upper bounds for the highest
probability characteristics through reduced-round Serpent variants [ABK98], the
Serpent proposal did not present any empirical results describing how successful
di�erential cryptanalysis would be against Serpent in practice.
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In this section we consider actual di�erential attacks against reduced-round
Serpent variants. Although there may exist other high-probability di�erentials
through several rounds of Serpent, we focus on a particular �ve-round charac-
teristic, B0

1 ! Y 0

5 , with probability p = 2�80. This characteristic spans Serpent's
second through sixth rounds (rounds i = 1; : : : ; 5). For completeness, this char-
acteristic is illustrated in Appendix A.1. Notationally, we use X 0 to represent
the xor di�erence between two values X and X�.

3.1 Basic Six-Round Di�erential Attack

We can use the above-mentioned �ve-round, probability 2�80, characteristic to
attack rounds one through six of 192- and 256-bit Serpent.

To sketch our attack: we request 282 plaintext pairs with an input di�erence
B0

1. For each last round subkey guess, we initialize a count variable to zero. Then,
for each un�ltered pair, we peel o� the last round and look for our expected out-
put di�erence from the �fth round. If we observe our expected output di�erence,
we increment our counter. If we count three or more right pairs, we note this
subkey as likely to be correct.

If we apply the linear transformation L to the intermediate di�erence Y 0

5

(Appendix A.1), we get the following expected input di�erence to the sixth
round:

B0

6

We can immediately identify all but approximately 2�47 of our ciphertext pairs
as wrong pairs because their di�erences B0

7 cannot correspond to our desired
di�erence B0

6.

After �ltering we are left with approximately 235 ciphertext pairs. Our attack
thus requires approximately 236 � 2116 partial decryptions, or work equivalent
to approximately 2150 six-round Serpent encryptions. If we retain only our un�l-
tered ciphertext pairs, this attack requires approximately 240 bytes of sequential
memory. The signal-to-noise ratio of this attack is 283.

3.2 Improved Six-Round Di�erential Attack

By counting on fewer than 116 bits of the last round subkey, we can considerably
improve the six-round di�erential attack in the previous section. For example, if
we count on two sets of 56 bits, our work is reduced to about 290 Serpent six-
round encryptions. This allows us to break six rounds of 128-, 192-, and 256-bit
Serpent using less work than exhaustive search.
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3.3 Bypassing the First Round

We can use structures to bypass the �rst round of our �ve-round characteristic
B0

1 ! Y 0

5 . This gives us an attack that requires fewer chosen plaintexts but
more work than the attack in Section 3.2. In this attack we use the four-round,
probability 2�67, characteristic B0

2 ! Y 0

5 . We request 247 blocks of 224 plaintexts
such that each block varies over all possible inputs to the active S-boxes in B0

1.
This gives us 270 pairs with our desired input di�erence to the second round.
We expect eight pairs with our desired di�erence Y 0

5 .
We can mount the attack in Section 3.2 by looking for the last round subkey

suggested seven or more times. In this attack we must consider a total of 294

possible ciphertext pairs. As with Section 3.2, we can immediately identify all
but 2�47 of these pairs as wrong pairs. This attack requires work equivalent to
approximately 2102 Serpent six-round encryptions and approximately 275 bytes
of random-access memory.

3.4 Additional Six-Round Di�erential Attack

We can modify our basic six-round di�erential attack by guessing part of the
last round subkey and looking at the eight passive S-boxes in B0

5. In order to do
this, we must guess 124 bits of the last round subkey.

In this attack we request 240 chosen-plaintext pairs with our input di�erence
B0

1. This gives us 29 pairs with di�erence B0

5 entering the �fth round. For a
correct 124-bit last round subkey guess, we expect to count 29 pairs with passive
S-boxes in Y 0

5 corresponding to the passive S-boxes in B0

5. For an incorrect last
round subkey guess, the number of occurrences of pairs with passive di�erences
in our eight target S-boxes is approximately normal with mean 28 and standard
deviation 24. Since 29 is 16 standard deviations to the right of 28, we expect no
false positives.

This attack requires 245 bytes of sequential memory and work equivalent to
approximately 2163 Serpent six-round encryptions.

3.5 Seven-Round Di�erential Filtering Attack

We can use our �ltering scheme in Section 3.1 to distinguish six rounds of Ser-
pent from a random permutation. In this distinguishing attack we request 2121

plaintext pairs with our desired input di�erence B0

1. We expect approximately
241 right pairs. Since our �lter passes ciphertext pairs with a probability 2�47,
we expect approximately 274 + 241 ciphertext pairs to pass our �lter.

In a random permutation, the number of un�ltered pairs is approximately a
normal distribution with mean 274 and standard deviation 237. Since 274 + 241

is 16 standard deviations to the right of the random distribution's mean of 274,
we can distinguish six-round Serpent from a random permutation. For a random
distribution, the probability of observing 274 + 241 or more un�ltered pairs is
approximately 2�190.
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We can extend this six-round distinguishing attack to a seven-round key re-
covery attack on rounds one through seven by guessing the entire last round
subkey K8 and performing our six-round distinguishing attack. This attack re-
quires approximately 2126 bytes of sequential memory 2248 Serpent seven-round
encryptions.

4 Boomerang Attacks

4.1 Seven-Round Boomerang Distinguisher

In addition to being able to perform traditional di�erential attacks against Ser-
pent, we can also use Wagner's boomerang attack [Wag99] to distinguish seven
rounds of Serpent from a random permutation.

Let us consider a seven-round variant of Serpent corresponding to the second
through eighth rounds of the full 32-round Serpent (i.e., rounds i = 1; : : : ; 7).
Call the �rst four rounds of this seven-round Serpent E0 and call the �nal three
rounds E1. Our seven-round Serpent is thus E = E1 �E0. We can now apply the
boomerang technique to this reduced-round Serpent.

Notice that if we only consider the �rst four rounds of the �ve-round charac-
teristic in Appendix A.1, we have a four-round characteristic B0

1 ! Y 0

4 through
E0 with probability 2�31. Also notice that there exist three-round characteristics
through E1 with relatively high probability. Appendix A.2 illustrates one such
characteristic, B0

5 ! Y 0

7 , with probability 2�16.
To use the terminology in [Wag99], let � = B0

1, let �
� = Y 0

4 , let r = Y 0

7 and
let r� = B0

5. We then use � ! �� as our di�erential characteristic for E0 and
r ! r� as our di�erential characteristic for E�1

1 .
In the boomerang distinguishing attack, we require approximately 4 � 294

adaptive-chosen plaintext/ciphertext queries, or approximately 294 quartets P ,
P 0, Q, and Q0 and their respective ciphertexts C, C 0, D, and D0. More speci�-
cally, in our distinguishing attack we request the ciphertext C and C 0 for about
294 plaintexts P and P 0 where P � P 0 = �. From C and C 0 we compute the
ciphertexts D = C �r and D0 = C 0 �r. We then apply the inverse cipher to
D and D0 to obtain Q and Q0. For any quartet P , P 0, Q, and Q0, we expect the
combined properties P � P 0 = Q�Q0 = � and C �D = C 0 �D0 = r to hold
with probability 2�94.

4.2 Eight-Round Boomerang Key Recovery Attack

We can extend our seven-round boomerang distinguisher to an eight-round key
recovery attack on 192- and 256-bit Serpent reduced to rounds i = 1; : : : ; 8 (or
rounds i = 9; : : : ; 16 or rounds i = 17; : : : ; 24). The basic idea is that we peel
o� the last round by guessing the last round subkey and look for our property
in the preceding seven rounds.

A di�culty arises because the boomerang attack makes adaptive chosen
plaintext and ciphertext queries. Suppose we encrypt P and P 0 to get C and
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C 0. To get D and D0, we must peel o� one round from each ciphertext C and
C 0, xor the result with r, and then re-encrypt the last round with the guessed
subkey. To do this, we will have to guess the 68 bits of the last round subkey
corresponding to the 17 active S-boxes of B0

8. Assume we consider 294 plaintext
pairs P and P 0. For each of these pairs, we will have to compute 268 di�erent
pairs Q and Q0 (for each of the 268 possible last round subkeys). Unfortunately,
this means we will likely end up working with the entire codebook of all 2128

possible plaintext/ciphertext pairs.
If we are willing to work with the entire codebook of 2128 plaintexts and

ciphertexts, then we can extract the last round subkey in the following manner.
We request the ciphertexts C and C 0 of 296 plaintext pairs with an input dif-
ference �. Then for each of our 268 possible last round subkeys and for each
of our 296 ciphertext pairs, we compute the boomerang ciphertexts D and D0.
We then request the plaintexts Q and Q0 corresponding to these ciphertexts. If
we correctly guess the last round subkey, we should expect to see the plaintext
di�erence Q�Q0 = � with probability 2�94. That is, for the correct subkey we
should expect to see the di�erence Q�Q0 = � approximately four times. (Or,
put yet another way, if we guess the correct subkey, we should generate about
four right quartets.)

This attack requires 268�297 partial decryptions and encryptions, or approx-
imately 2163 eight-round Serpent encryptions. This attack also requires access to
the entire codebook, and thus 2128 plaintexts and 2133 bytes of random-access
memory.

5 Ampli�ed Boomerang Attacks

In [KKS00] we introduced a new class of cryptanalytic attacks which we call
\ampli�ed boomerangs." Ampli�ed boomerang attacks are similar to traditional
boomerang attacks but require only chosen plaintexts. The chosen-plaintext{
only requirement makes the ampli�ed boomerang attacks more practical than
the traditional boomerang attacks in many situations. In [KKS00] we describe
a seven-round boomerang ampli�er distinguishing attack and an eight-round
boomerang ampli�er key recovery attack requiring 2113 chosen plaintext pairs,
2119 bytes of random-access memory, and roughly 2179 Serpent eight-round en-
cryptions.

5.1 Ampli�ed Seven-Round Distinguisher

In this section we review the seven-round ampli�ed boomerang distinguishing
attack presented in [KKS00]. We request 2112 plaintext pairs with our input
di�erence �. After encrypting with the �rst half of the cipher E0, we expect
roughly 281 pairs to satisfy the �rst characteristic �! ��. There are approx-
imately 2161 ways to form quartets using these 281 pairs. We expect there to
be approximately 233 quartets (Y 0

4 ; Y
1
4 ) and (Y 2

4 ; Y
3
4 ) such that Y 0

4 � Y
2
4 = r�.

However, because (Y 0
4 ; Y

1
4 ) and (Y 2

4 ; Y
3
4 ) are right pairs for the �rst half of the
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cipher, and Y 0
4 � Y 1

4 = Y 2
4 � Y 3

4 = ��, we have that Y 1
4 � Y 3

4 must also equal
r�. In e�ect, the randomly occurring di�erence between Y 0

4 and Y 2
4 has been

\ampli�ed" to include Y 1
4 and Y 3

4 .
At the input to E1 we expect approximately 233 quartets with a di�erence

of (r�;r�) between the pairs. This gives us approximately two quartets after
the seventh round with an output di�erence of (r;r) across the pairs. We can
identify these quartets by intelligently hashing our original ciphertext pairs with
our ciphertext pairs xored with (r;r) and noting those pairs that collide.
For a random distribution, the probability of observing a single instance of our
cross-pair di�erence (r;r) is approximately 2�33.

5.2 Ampli�ed Eight-Round Key Recovery Attack

In [KKS00] we extended the previous distinguishing attack to an eight-round key-
recovery attack on rounds one through eight of Serpent requiring 2113 chosen-
plaintext pairs, 2119 bytes of random-access memory, and work equivalent to
approximately 2179 eight round Serpent encryptions. In this attack we guess 68
bits of Serpent's last round keyK9. For each key guess, we peel o� the last round
and perform the previous distinguishing attack.

5.3 Experimental Improvements to the Eight-Round Attack

We can improve our eight-round boomerang ampli�er attack by observing that
we do not need to restrict ourselves to using only one speci�c cross-pair di�erence
(r�;r�) after E0. That is, rather than considering only pairs of pairs with a
cross-pair di�erence of (r�;r�) after E0, we can use pairs of pairs with a cross-
pair di�erence of (x; x) after E0, for any x, provided that both pairs follow the
characteristic x! r through E1 with su�ciently high probability.

Experimentally, we �nd that
P

x Pr[x ! r through E1]
2 is approximately

2�23.3 Consequently, if we request 2109 chosen-plaintext pairs with our input
di�erence � to E0, we should expect approximately 16 pairs of pairs with a
cross-pair di�erence of (r;r) after E1. This reduces the work of our attack
in Section 5.2 to approximately 2175 eight-round Serpent encryptions. As noted
in [Wag99], this observation can also be used to improve the standard boomerang
attack.

5.4 Ampli�ed Nine-Round Key Recovery Attack

We can further extend the above eight-round attack to break nine rounds of 256-
bit Serpent using less work than exhaustive search. To do this, let us consider
a nine-round Serpent variant corresponding to rounds zero through eight of

3 We generated 228 pairs of ciphertext pairs with a cross-pair di�erence (r;r). We
decrypted each pair through E�1

1 and counted the number of pairs with a cross pair
di�erence (x; x) for any x. We observed 35 such pairs of pairs.
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Serpent. Let us still refer to rounds one through four as E0 and rounds �ve
through seven as E1.

If we apply the inverse linear transformation to � we get

Y 0

0

where Y 0

0 has 24 active S-boxes. We request 214 blocks of 296 chosen plaintexts
such that each block varies over all the possible inputs to the active S-boxes in
Y 0

0 . This gives us 2
109 pairs with our desired di�erence � into E0 and 16 pairs

of pairs with a cross-pair di�erence (r;r) after E1. In order to identify our
ampli�ed boomerang, we must guess 96 bits of the �rst round subkey K0 and
68 bits of the last round subkey K9.

We �rst guess the 96 bits of K0 corresponding to the 24 active S-boxes in Y
0

0 .
For each 96 bit key guess and for each plaintext P , we encrypt P one round to Y0.
We store P with satellite data Y0 in HASH0[K0] and we store Y0 with satellite
data P in HASH1[K0]. This step takes approximately 2212 bytes of random-
access memory and work equivalent to 2203 Serpent eight-round encryptions.

Next, for each 68-bit key guess of K9, we want to establish a list of all pairs
(P 0; P 2) that have di�erence r as the output of the eighth round. To do this,
for each ciphertext C0, we decrypt up one round to X0

8 , compute X2
8 = X0

8�B
0

8,
and store (X0

8 ; X
2
8 ) or (X

2
8 ; X

0
8 ) in a hash table (where the order of X0

8 and X2
8

depends on whether X0
8 is less than X2

8 ). The satellite data in our hash table
entry includes the plaintext P 0 corresponding to C0. If a collision occurs in
our hash table, we have found two plaintexts P 0 and P 2 that have our desired
di�erence r after the eighth round. We store these pairs (P 0; P 2) in LIST2[K9]
and HASH2[K9]. This step takes approximately 2184 bytes of random-access
memory and work equivalent to 2175 Serpent eight-round encryptions.

The following algorithm counts the number of occurrences of our boomerang
ampli�er through E1 � E0. This algorithm can be thought of as sending a
boomerang from the ciphertext to the plaintext and back again:

for each 96-bit subkey guess of K0 do

for each 68-bit subkey guess of K9 do

count  0
for each pair (P 0; P 2) in LIST2[K9] do
lookup Y 0

0 , Y
2
0 corresponding to P 0, P 2 in HASH0[K0]

Y 1
0  Y 0

0 � Y
0

0 , Y
3
0  Y 2

0 � Y
0

0

lookup P 1, P 3 corresponding to Y 1
0 , Y

3
0 in HASH1[K0]

if (P 1; P 3) in HASH2[K9] then
count  count + 1

if count � 15 then
save key guess for K0, K9

For each subkey guess guess of K9, we expect LIST2[K9] will contain approxi-
mately 2219 � 2�128 = 291 pairs. Consequently, we expect the inner loop of the

10



above algorithm to execute 2255 times. This attack requires work equivalent to
approximately 2252 Serpent nine-round encryptions.

6 Meet-in-the-Middle Attacks

Although not as powerful as our previous attacks, we can use the meet-in-the-
middle technique to attack six-round Serpent. In the meet-in-the-middle attack,
we try to determine the value of a set of intermediate bits in a cipher by guessing
key bits from both the plaintext and ciphertext sides. The attack looks for key
guesses that match on the predicted values of the intermediate bits.

We did a computer search for the best meet-in-the-middle attacks that isolate
a set of bits in one column of an intermediate state of Serpent. Table 2 summa-
rizes our results. Although we can also use the meet-in-the-middle technique to
predict bits in more than one column of an intermediate state of Serpent, doing
so requires additional key guesses and is thus undesirable.

Rounds b s Key guess from top Key guess from bottom

6 1 B3 236 239
5 2 B2 152 223
5 3 B2 176 224
5 4 B2 204 225
6 1 X3 237 238
5 2 X2 154 221
5 3 X2 179 221
5 4 X2 208 221
5 1 Y2 200 104
5 2 Y2 200 178
5 3 Y2 208 198
5 4 Y2 208 221

Table 2. Meet-in-the-middle requirements to determine b intermediate bits of internal
state s in a given number round Serpent variant.

The clearest way to illustrate the meet-in-the-middle attack on Serpent is
through diagrams similar to those used in Section 3 and Appendix A. The plain-
text in this attack on six-round Serpent is B0 and the ciphertext is B6. The bit
we are trying to predict is the eighth most signi�cant bits of x3 where x3 is the
fourth word of X3, X3 = (x0; x1; x2; x3).

The 237 key bits guessed from the plaintext side are

K0

11



K1

K2

K3

and the 238 key bits guessed from the ciphertext side are

K4

K5

K6

where the shaded cells denote the bits we guess.
The attack proceeds as follows. We obtain 512 known plaintexts and their

corresponding ciphertexts. For each plaintext key guess, we compute the target
bit of X3 for each of our 512 plaintexts. We concatenate these bits for each
plaintext into a 512-bit value. We then store this 512-bit value, along with the
associated key guess, in a hash table.

For each ciphertext key guess, we proceed along the same lines and compute
the target bit of X3 for each of our 512 ciphertexts. We concatenate these bits
for each ciphertext into a 512-bit value and look for this value in our hash table.
If we �nd such a value, then the plaintext and ciphertext keys suggested by the
match will likely be correct. This attack requires approximately 2246 bytes of
random-access memory and work equivalent to 2247 six-round encryptions.

7 Key Schedule Observations

This section addresses some observations we have about the Serpent key sched-
ule. We currently do not know of any cryptanalytic attacks that use these ob-
servations.
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As described in Section 2, the prekeys w0; w1; : : : ; w131 are computed using
the recurrence

wi  (wi�8 � wi�5 � wi�3 � wi�1 � �� i)n 11 (1)

where w�8; : : : ; w�1 is the initial 256 bit master key. If we ignore the rotation
and the internal xor with � and i, we get the linear feedback construction

wi  wi�8 � wi�5 � wi�3 � wi�1 (2)

Let us now consider two keys K and K� that have a di�erence K 0 = K�K�.
The prekeys for K and K� expand to w0; : : : ; w131 and w�

0 ; : : : ; w
�

131, respec-
tively. By virtue of Equation 2, the prekey di�erences for K 0 can be computed
using the recurrence

w0

i = wi � w
�

i = w0

i�8 � w
0

i�5 � w
0

i�3 � w
0

i�1 (3)

for i = 0; : : : ; 131. If we use the original recurrence (Equation 1) to compute the
prekeys rather than Equation 2, the recurrence for w0

i becomes

w0

i = (w0

i�8 � w
0

i�5 � w
0

i�3 � w
0

i�1)n 11 (4)

for i = 0; : : : ; 131.
For any key K, the ith round subkey Ki is computed from the four prekeys

w4i; w4i+1; w4i+2; w4i+3. The same can be said for the key K�. If for any given
round i the four prekeys for K are equivalent to the corresponding four prekeys
for K�, then the subkeys Ki and K�

i will be equivalent; this occurs when the
prekey di�erences w0

4i; w
0

4i+1; w
0

4i+2; w
0

4i+3 are zero.
Let us now observe some situations where the prekey di�erences for the ith

round subkey are zero. As a simple example, let us consider Figure 1. The shaded
cells in Figure 1 depict prekeys that are di�erent for K and K�. The unshaded
areas are equivalent between the keys. Notice that six out of the 33 128-bit
subkeys are equivalent.

There is a heavy restriction on Figure 1: all the di�erences must be the
same. That is, when Equation 2 is used for the prekey computation, it must
be that w0

�5 = w0

�3 = w0

�1 = � � � = w0

127 = k for some constant k. If we
consider the original prekey recursion (Equation 4), this example works only
when k = 0xFFFFFFFF. Furthermore, when the non-zero prekey di�erences are
0xFFFFFFFF, six out of 33 subkeys are equivalent and �ve out of 33 subkeys have
complementary prekeys.

8 Conclusions

In this paper we consider several attacks on Serpent. We show how to use di�er-
ential, boomerang, and ampli�ed boomerang techniques to recover the key for
Serpent up to nine rounds. We also show how to break six rounds of Serpent
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w0

�8 : : : w
0

15

w0

16 : : : w
0

39

w0

40 : : : w
0

63

w0

64 : : : w
0

87

w0

88 : : : w
0

111

w0

112 : : : w
0

131

Fig. 1. Di�erence propagation in the key schedule when w0

�5 = w0

�3 = w0

�1 =
0xFFFFFFFF.

using a meet-in-the-middle attack. We then provide key schedule observations
that may someday be used as the foundation for additional attacks.

Although these attacks do not come close to breaking the full 32-round cipher,
we feel that these results are worth reporting for several reasons. Speci�cally,
the results and observations in this paper provide a starting point for additional
research on Serpent. These results also provide a security reference point for
discussions about modifying the number of rounds in Serpent.

In conjunction with the previous observation, we would like to point out
that there are several avenues for further research. Although our current pa-
per addresses di�erential attacks against Serpent, we have not yet tried lin-
ear and di�erential-linear attacks. We are also attempting to mount additional
boomerang variants against Serpent. We expect that all these attacks, while
quite capable of breaking reduced-round versions of Serpent, will fail to break
the entire 32-round Serpent. In order to break a substantial portion of Serpent's
32 rounds, we suspect that entirely new attacks may need to be invented.
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A Di�erential Characteristics

A.1 Five-Round Characteristic

The following is an example of a �ve-round di�erential characteristic with prob-
ability p = 2�80. We used this characteristic in Section 3. This characteristic
passes between rounds i = 1 mod 8 and i = 5 mod 8. We used only the �rst four
rounds of this �ve-round characteristic for our boomerang attack in Section 4.

We illustrate this characteristic by showing �ve one-round characteristics that
can be connected with the Serpent linear transformation L. The shaded bits in
the �gures denote di�erences in the pairs. We feel that these �gures provide an
intuitive way to express Serpent's internal states.

The �rst-round characteristic, B0

1 ! Y 0

1 , has probability 2�13:

B0

1

Y 0

1

The second-round characteristic has probability 2�5:

B0

2

Y 0

2
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The third-round characteristic has probability 2�3:

B0

3

Y 0

3

The fourth-round characteristic has probability 2�10.

B0

4

Y 0

4

The �fth-round characteristic has probability 2�49.

B0

5

Y 0

5

A.2 Boomerang Characteristic

The following is an example of a three-round characteristic with probability
p = 2�16. We used this characteristic in Section 4. This characteristic passes
between rounds i = 5 mod 8 and i = 7 mod 8.
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The �fth-round characteristic has probability 2�10:

B0

5

Y 0

5

The sixth-round characteristic has probability 2�2:

B0

6

Y 0

6

The seventh-round characteristic has probability 2�4:

B0

7

Y 0

7

If we apply the linear transformation L to Y 0

7 , we get:

B0

8
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Abstract. The authors of Rijndael [3] describe the \Square attack" as
the best known attack against the block cipher Rijndael. If the key size is
128 bit, the attack is faster than exhaustive search for up to six rounds.
We extend the Square attack on Rijndael variants with larger keys of 192
bit and 256 bit. Our attacks exploit minor weaknesses of the Rijndael
key schedule and are faster than exhaustive search for up to seven rounds
of Rijndael.

1 Introduction

The block cipher Rijndael [3] has been proposed as an AES candidate
and was selected for the secound round. It is a member of a fast-growing
family of Square-like ciphers [2{4, 6, 7].

Rijndael allows both a variable block length of M � 32 bit with M 2
f4; 6; 8g and a variable key length of N � 32 bit, N an integer. In the
context of this paper we concentrate on M = 4, i.e., on a block length of
128 bit, and on N 2 f4; 6; 8g, i.e., on key sizes of 128, 192, and 256 bit.
We abridge these variants by RD-128, RD-192 and RD-256. The number
R of rounds is speci�ed to be R = 10 for RD-128, R = 12 for RD-192, and
R = 14 for RD-256. In the context of this paper, we consider reduced-
round versions with R � 7.

The authors of Square [2] described the \Square attack", a dedicated
attack exploiting the byte-oriented structure of Square. The attack works
for Square reduced to six rounds and is applicable to Rijndael and other
Square-like ciphers as well [3, 4, 1]. This paper deals with extensions of
the Square-attack for RD-192 and RD-256.

In Section 2, we shortly describe Rijndael, leaving out many details
and pointing out some properties relevant for our analysis. Section 3 deals
with the Square attack for up to six rounds of Rijndael, originating from

? Supported by DFG grant Kr 1521/3-1.



[2, 3]. In Sections 4{6 we describe attacks for seven rounds of Rijndael.
The attack in Section 4 and its analysis is valid for all versions of Rijndael,
while the attacks in Section 5 and Section 6 are dedicatedly for Rijndael-
256 and Rijndael-192, exploiting minor weaknesses of the Rijndael key
schedule. We give �nal comments and conclude in Section 7.

2 A Description of Rijndael

Rijndael is a byte-oriented iterated block cipher. The plaintext (a 128-
bit value) is used as initial state, the state undergoes a couple of key-
dependent transformations, and the �nal state is taken as the cipher-
text. A state A 2 f0; 1g128 is regarded as a 4 � 4 matrix (Ai;j), i; j 2
f0; 1; 2; 3g of bytes (see Figure 1). The four columns of A are Ai =
(A0;j ; A1;j ; A2;j ; A3;j).

(3,0) (3,2) (3,3)

(1,3)

(0,3)(0,0) (0,2)

(1,2)

(2,2)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

(3,1)

(2,3)

Fig. 1. The index positions (i; j) for a 4*4 matrix of bytes.

Given the initial state, R rounds of transformations are applied. Each
round can be divided into several elementary transformations.

By the key schedule, the key, a (N �32)-bit value with N 2 f4; 6; 8g, is
expanded into an array W [�] of 4(R+1) 32-bit words W [0]; : : : ;W [4(R+
1) � 1]. Four such words W [4r + j] with j 2 f0; 1; 2; 3g together are
used as r-th \round key" Kr, with r 2 f0; : : : ; Rg. Like the state, we
regard a round key Kr as a 4 � 4 matrix of bytes Kr

i;j with four columns
Kr

j =W [4r + j] for j 2 f0; 1; 2; 3g.

2.1 The Elementary Transformations of Rijndael

Rijndael uses four elementary operations to transform a state A = (Ai;j)
into a new state B = (Bi;j), see also Figure 2:
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1. The byte substitution (BS): Bi;j := S(Ai;j) for i; j 2 f0; 1; 2; 3g. Here,
S denotes a permutation over f0; 1g8, i.e., S�1 is de�ned with Ai;j =
S�1(Bi;j).

2. The shift row operation (SR), a cyclic shift of bytes: Bi;j := Ai;(j+i) mod 4.
3. The mix column transformation (MC). Each column Ai of state A

is transformed via a linear transformation � over f0; 1g32, i.e. Bi :=
�(Ai) for i 2 f0; 1; 2; 3g. Also, � is invertible.
An inputX 2 f0; 1g32 for � can be seen as a vectorX = (X0;X1;X2;X3)
of four bytes. Consider X 0 = (X 0

0;X
0

1;X
0

2;X
0

3) to be di�erent from X

in exactly k bytes (1 � k � 4), i.e.

k =
��f i 2 f0; 1; 2; 3g j Xi 6= X 0

i g
�� :

Then Y = �(X) and Y 0 = �(X 0) are di�erent in at least 5�k of their
four bytes. The same property holds for the inverse ��1 of �.

4. The key addition (KA). The r-th round key Kr = (Kr
i;j) is added to

the state A by bit-wise XOR: Bi;j := Ai;j �Kr
i;j.

Note that all elementary transformations of Rijndael are invertible.

S

Mix Column (MC)

Shift Row (SR)

Byte Substitution (BS)

Key Addition (KA)

Fig. 2. The four elementary transformations of Rijndael.
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2.2 The Rijndael Round Transformation

For r 2 f0; : : : ; Rg, the round key Kr consists of the expanded key words
W [4r], . . . , W [4r + 3]. The structure of Rijndael is de�ned as follows1:

1. S := plaintext;

2. KA (S, K0); (� add round key 0 before the �rst round �)

3. for r := 1 to R do: (� run through round 1, 2, . . . , R �)

4. S := BS(S); (� byte substitution �)

5. S := SR(S); (� shift row �)

6. S := MC(S); (� mix column �)

7. S := KA(S, Kr); (� add round key r �)

8. ciphertext := S.

Steps 4{7 are the \standard representation" of the Rijndael round struc-
ture. The implementor of Rijndael has a great degree of freedom to change
the order the elementary operations are done { without changing the be-
havior of the cipher. (We refer the reader to the description of the \alge-
braic properties" and the \equivalent inverse cipher structure" for details
[3, Section 5.3].) We describe one alternative representation of the round
structure. As an \alias" for the r-th round key Kr we use the value

Lr = SR�1(MC�1(Kr)): (1)

Accordingly, we distinguish between the \L-representation" Lr of a round
key and its \K-representation". Knowing Lr is equivalent to knowingKr,
and knowing a column Kr

j of Kr is equivalent to knowing four bytes of
Lr, see Table 1.

known column of Kr known bytes Lr
i;j of L

r

Kr
0 (i; j) 2 f(0; 0); (1; 3); (2; 2); (3; 1)g

Kr
1 (i; j) 2 f(0; 1); (1; 0); (2; 3); (3; 2)g

Kr
2 (i; j) 2 f(0; 2); (1; 1); (2; 0); (3; 3)g

Kr
3 (i; j) 2 f(0; 3); (1; 2); (2; 1); (3; 0)g

Table 1. Known columns of a key in K-representation and the corresponding known
key bytes in L-representation.

1 Actually, the authors of Rijndael [3] specify an exception: in the last round, the MC-
operation is left out. As was stressed in [3], this modi�cation does not strengthen
or weaken the cipher. In the current paper, we assume for simplicity that the last
round behaves exactly like the other rounds.
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The following describes a functionally equivalent round structure for
Rijndael, see also Figure 3.

4. S := BS(S); (� byte substitution �)
5. S := KA(S, Lr); (� add round key, given in L- representation �)
6. S := SR(S); (� shift row �)
7. S := MC(S); (� mix column �)

S S

Kr

Lr

SR

MC

KA

BS BS

KA

SR

MC

SR

MC

L-repr.

K-repr.

Fig. 3. The Structure of a Rijndael round.
Left: The standard representation of the Rijndael round transformation
Middle: The round key { changing between K-representation and L-representation
Right: The alternative representation of the Rijndael round transformation

2.3 The Rijndael Key Schedule

The key schedule is used to generate an expanded key from a short (128{
256 bit) \cipher key". We describe the key-schedule using word-wise oper-
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ations (where a word is a 32-bit quantity), instead of byte-wise ones. The
cipher key consists of N 32-bit words, the expanded key of 4�(R+1) such
wordsW [�]. The �rst N wordsW [0], . . . , W [N�1] are directly initialised
by the N words of the cipher key.

For k 2 f1; 2; : : :g, const(k) denotes �xed constants, and f; g : f0; 1g32 !
f0; 1g32 are nonlinear permutations.2 For i 2 fN; : : : ; 4 � (R+1)� 1g the
words W [i] are de�ned recursively:

If (i mod N) = 0
then W [i] :=W [i�N ]� f(W [i� 1])� const(idivN)
else if ((N > 6) and (i mod N) = 4)

then W [i] :=W [i�N ]� g(W [i � 1])
else W [i] :=W [i�N ]�W [i� 1]:

(2)

Note that two words W [i� 1] and W [i�N ] suÆce to compute the word
W [i]. Similarly, we can go backwards: Given two wordsW [i] andW [i�1],
we can compute W [i � N ]. (This will be useful for our attacks below.)
Hence, any N consecutive wordsW [k], . . . , W [k+N�1] of the expanded
key suÆce to eÆciently generate the complete expanded key and thus to
completely break Rijndael.

3 The Square Attack for Rijndael

In this section we describe the dedicated Square-Attack for Rijndael. More
details can be found in [2, 3]. We start with a simple attack on four rounds
and extend the simple attack by an additional round at the beginning and
another one at the end. This leads to the \Square-6" attack for six rounds
of Rijndael. Analysing the performance of our attacks with respect to RD-
192 and RD-256 is delayed until the end of this section.

3.1 Attacking Four Rounds { the Simple Attack

To describe the attack we need the notion of a \�-set", i.e., a set of
28 states that are all di�erent in some of their 4 � 4 bytes (the \active"
bytes), and all equal in the other (\passive") bytes. In other words, for
two distinct states A and B in a �-set we always have

Ai;j 6= Ai;j if the byte at position (i; j) is active, and
Ai;j = Bi;j else, i.e., if the byte at (i; j) is passive.

2 We omit the de�nition of f and g, but we point out that the four functions f , g,
f�1 and g�1 are �xed in the de�nition of Rijndael and can be computed eÆciently.
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A �-set with exactly k active bytes is a \�k-set".

The adversary chooses one �1-set P0 of states (plaintexts). By Pi we
denote the sets of 28 states which are the output of round i. P1 is a �4-
set, all four active bytes in the the same column. P2 is a �16-set. P3 is
unlikely to be a �-set. But, as explained in [2, 3], all the bytes of S3 are
\balanced", i.e., the following property holds:

For all (i; j) 2 f0; 1; 2; 3g2 :
M

A2P3

Ai;j = 0: (3)

Recall that we consider a four-round attack, i.e., P4 is the set of 28

ciphertexts the adversary learns. It is unlikely that the bytes of P4 are
balanced, but the balancedness of the bytes of P3 can be exploited to
�nd the fourth round key K4. Let L4 be the L-representation of K4, cf.
Equation (1). The attack de�nes a set Q4 \in between"3 P3 and P4:

1. For X 2 P4:

Y := MC�1(X);
Z := SR�1(Y ).

Denote the set of 28 states Z by Q4.

2. For all (i; j) 2 f0; 1; 2; 3g2 :

for a 2 f0; 1g8:

b(a) :=
L

Z2Q4
S�1(Zi;j � a);

if b(a) 6= 0 then conclude L4
i;j 6= a.

In short, we invert round four step by step: invert the mix column oper-
ation, invert the shift row operation, add (a possible choice for) the key
byte L4

i;j and invert the byte substitution. If the guess a 2 f0; 1g8 for
the key L4

i;j is correct, the set of 2
8 bytes S�1(Zi;j � a) is balanced, i.e.,

b(a) = 0. But if our guess a0 for L4
i;j is wrong, we estimate b(a0) = 0 to

hold with only a probability of 2�8. Thus, on the average two candidates
for for each byte L4

i;j are left { the correct byte and a wrong one. We can
easily reconstruct an expected number of less than 216 candidates for L4.

Each candidate corresponds with a unique choice for the 128-bit cipher
key of RD-128. To �nd the cipher key, we may either choose a second �1-
set of plaintexts, or just use exhaustive search over all key candidates,
using the same 28 known pairs of plaintext and ciphertext as before.
With overwhelming probability, either approach uniquely determines the

3 In general, we regard Q5 to be a set of states \in between" Pr�1 and Pr. Note
that converting a state in Pr into its counterpart in P4 does not depend on the
key and can be just like converting a round key from its K-representation into its
L-representation, similarly to Equation (1).
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cipher key, using few memory and an amount of work determined by step
2, i.e., about 220 byte-wise XOR-operations. Note that the �rst approach
needs twice as many chosen plaintexts as the second one.

3.2 An Extension at the End

As suggested in [2, 3], the above basic attack can be extended by one
additional round at the beginning and another round at the end. We
start with extending the additional round at the end.

Let P0 be chosen as above. By P5, we denote the set of 28 outputs
of round 5. Similar to Q4 above, the adversary can �nd Q5 by applying
MC�1 and applying SR�1. Given the set Q5, we can compute P3 by
inverting 112 rounds of Rijndael.

If the set P5 (or Q5) is �xed, the bytes of P3 at position, say, (0; 1)
only depend on L5

0;1, L
5
1;1, L

5
2;1, L

5
3;1, and on L4

0;1, see Figure 4.

Similar to the four-round attack, we may guess such a �ve-tuple of key
bytes and compute the corresponding bytes of P3. If these aren't balanced,
we reject the corresponding key bytes. We expect one out of 28 incorrect
�ve-tuples to be not rejected. With �ve �-sets of plaintexts, i.e., 5 � 28

chosen plaintexts, the the cipher key can easily be found via exhaustive
search. (A more diligent treatment would allow us to reduce the number of
chosen plaintexts for this attack, but without much e�ect on the required
number of chosen plaintexts for the six-round attack below.)

To measure the running time of our attacks, we use the notion of a
\basic operation". Given a column Yj of bytes of a state Y in Qr, the key
column Lr

j and another key byte Lr�1
k;j with the row index k as the input,

we compute the byte Xk;j of a state X in Pr�2, using V = (V0; V1; V2; V3)
and W = (W0;W1;W2;W3) as intermediate values and de�ne the basic
operation Xk;j = BO(Yj ; k; L

r
j ; L

r�1
k;j ) as follows:

1. For i := 0 to 3: Vi := S�1(Yi;j � Lr
i;j).

2. W := ��1(V ).

3. Xk;j := S�1(Wk;j � Lr�1
k;j ).

In short: one basic operation requires 5 byte-wise XORs, 5 evaluations of
S�1, and one evaluation of ��1.

To check the correctness of a quintuple of bytes, we have to do 28

basic operations and to XOR the results for a balance-check by verifying
Equation (3). We do this for every quintuple of bytes. Thus, the �ve-round
attack takes the time of about 248 basic operations.
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Fig. 4. 1 1
2
rounds of Rijndael: Given one column Yj of the output state Y and �ve

corresponding key bytes, one can �nd one byte Xk;j of the input X by inverting these
1 1
2
rounds of Rijndael; we write Xk;j = BO(Yj ,k,key bytes) and consider this a \basic

operation" for our attacks.

3.3 Attacking Six Rounds { the Square-6 attack

Now we extend the above attack by an additional \round 0". We denote
this attack the \Square-6 attack".

Let P0 be a �1-set, as before. By doing one additional round of
decryption, we get a �4-set P�1. The active bytes of P�1 are at positions
determined by the positions of the active P0-byte. E.g., if the P0-byte at
position (0; 0) is the active one, the P�1-bytes at positions (0; 0), (1; 3),
(2; 2), and (3; 1) are active.

The idea is to arbitrarily �x the plaintext bytes at the passive posi-
tions and to choose 232 plaintexts varying at the active positions. If the
four corresponding bytes of the round key K�1 for round 0 are known
(e.g. for the active P0-byte at position (0; 0): if K�1

0;0 , K
�1
1;3 , K

�1
2;2 and
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K�1
3;1 are known), the adversary can easily determine many 28-sets P�1 of

plaintexts, such that the sets P0 are �
1-sets.

The adversary accordingly chooses 232 plaintexts and, for all 232 rel-
evant key bytes, runs the �ve-round attack described above. This is 232

times slower than the �ve-round attack itself, i.e. takes about 280 basic
operations. The memory requirement for this attack is dominated by the
need to store 232 ciphertexts.

3.4 Considering RD-192 and RD-256

Note that the six-round Square-6 attack and the �ve-round attack allow
us to �nds two round keys K4 and K5 at the same time. (The attacker
chooses a �ve-tuple of key bytes, one byte from K4 and four from K5,
and probabilistically verify if that choice is correct.) Once the attacker
knows two consecutive round keys, i.e. eight consecutive words from the
expanded key, the attacker can easily run the key schedule backwards
to �nd the cipher key. In other words, the performance of the Square-6
attack does not depend on which 
avor of Rijndael we attack, RD-128,
RD-192, or RD-256. We call such an attack a \generic" attack.

The simple four-round attack only provides the attacker with the
round key K4. But �nding the round key K3 is easy, since the set P2
of states is a �16-set.

4 A Generic Attack for Seven Rounds of Rijndael

It is easy to extend the Square-6 attack to seven rounds of Rijndael:

1. Choose 232 input plaintexts for the Square-6 attack and ask for the
corresponding ciphertexts.

2. For all K7 2 f0; 1g128 :
3. Last-round-decrypt the 232 ciphertexts under K7.
4. Run the Square-6 attack for the results, to get the round keys K6

and K5.
5. Given the round keysK5,K6 andK7, we have more than suÆcient

key material to recover the complete extended key and to check it
for correctness.

The seven-round attack requires the same amount of chosen plaintexts
and memory as the Square-6 attack. The running time increases by a
factor of 2128, i.e. to the equivalent of

280 � 2128 = 2208 basic operations.
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Even though the attack is generic, it is pointless for attacking either RD-
128 or RD-192 { exhaustive key search is much faster for these variants
of Rijndael.

5 Attacking Seven Rounds of RD-256

For RD-256, the above generic seven-round attack improves on exhaus-
tive search. But, as shown here, the RD-256 key schedule allows us to
accelerate the attack by a factor of 28.

Note that if we know (or have chosen) K7, we know the expanded key
words W [28], W [29], W [30], and W [31]. By Formula (2), we get

W [21] =W [28] �W [29];

W [22] =W [29] �W [30]; and

W [23] =W [30] �W [31]:

Hence, we know know three columns of K5, including e.g. K5
1 . As ex-

plained in Section 2.3, this implies knowing 12 bytes of L5, including e.g.
L5
0;1. To test the bytes of 256-set P4 at position (0; 1), we need the bytes

in column 1 from Q6, the corresponding key column L6
1 from L6 and the

key byte L5
0;1 from L5 (cf. Figure 4 at page 9). We attack seven rounds

of RD-256 by the following algorithm:

1. Choose 232 distinct input plaintexts, varying at the byte positions
(0; 0), (1; 2), (2; 2), and (3; 1) and constant at the other byte positions.
Ask for the corresponding ciphertexts.

2. For all 232 combinations of K0
0;0, K

0
1;3, K

0
2;2, K

0
3;1:

3. Fix 32 distinct sets P0[i] of plaintexts (i 2 f0; : : : ; 31g) with jP0[i]j =
28, such that the corresponding P1[i] are �

1-sets.
4. For all 2128 round keys K7:

5. Decipher the 32 sets of ciphertexts P7[i] to get P6[i] and Q6[i].
6. Compute L5

0;1.
7. For all 232 combinations of L6

1 = (L6
0;1; L

6
1;1; L

6
2;1; L

6
3;1):

8. i := 0; reject := false;
9. while i � 31 and reject=false:

begin
10. Compute

b[i] :=
M

A2Q6[i]

BO(A1; 1; L
6
1; L

5
0;1):

11



11. If b[i] = 0 then i := i+1
else reject := true.

end (� while �).
12. If reject=false then stop (� and accept key bytes �).

The above algorithm exhaustively searches a subspace of size 2192 of
the full key space. When all 24 key bytes are correct, step 11 always exe-
cutes then-clause and increments the counter i. After 32 such iterations,
the algorithm stops in step 12.

If any of the 24 byte key bytes is wrong, we execute the then-clause
only with a probability of 2�8. Since the counter i runs from 0 to 31,
the probability for a wrong 24-tuple of key bytes to be accepted is below
2�8�32 = 2�256. There are only 2192 such tuples of key bytes, thus the
probability to accept any wrong 24-tuple is less than 232�2128�232�2�256 �
2�64, i.e. negligible.

When stopping, the algorithm accepts K7 and four bytes of K6 (or
L6). By exhaustive search, it is easy to �nd the other 12 bytes of K6.
Having done that, the key schedule allows to �nd the full expanded key.

For the attack, 232 chosen plaintexts suÆce, and the required storage
space is dominated by the need to store the corresponding 232 ciphertexts.

What about the running time? The loop in step 2 is iterated 232 times,
step 4 takes 2128 iterations, and the loop in step 7 is iterated 232 times.
On the average, the while-loop is iterated 1+ 2�8+2�16 + : : : times, i.e.,
about once. Step 12 needs 28 basic operations. This makes about

232 � 2128 � 232 � 1 � 28 = 2200 basic operations.

6 Attacking Seven Rounds of RD-192

In the case of RD-192, accelerating the generic attack by a factor of 28,
as in the case of RD-256, would still not suÆce to outperform exhaustive
search. Fortunately (for the cryptanalyst), the RD-192 key schedule allows
an acceleration by a factor of 224, compared to the generic attack,

The columns of K7 are the words W [28], W [29], W [30], and W [31] of
the expanded key. These four words allow us to compute three more words
{ in the case of RD-192, these are W [23], W [24], and W [25], cf. Section
2.3. Two of these words are columns of the round key K6, while the third
word is a column of K5: W [24] = K6

0 , W [25] = K6
1 , and W [23] = K5

3 .
FromW [23],W [24], andW [25], we can compute three useful key bytes

for the attack, for example L5
0;3, L

6
1;3, and L

6
2;3, cf. Table 1 on page 4. The

two remaining key bytes (in our example L6
0;3 and L6

3;3) still have to be
found:
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1. Choose 232 distinct input plaintexts, varying at the byte positions
(0; 0), (1; 2), (2; 2), and (3; 1) and constant at the other byte positions.
Ask for the corresponding ciphertexts.

2. For all 232 combinations of K0
0;0, K

0
1;3, K

0
2;2, K

0
3;1:

3. Fix 32 distinct sets P0[i] of plaintexts (i 2 f0; : : : ; 31g) with jP0[i]j =
28, such that the corresponding P1[i] are �

1-sets.

4. For all 2128 round keys K7:

5. Decipher the 32 sets of ciphertexts P7[i] to get P6[i] and Q6[i].
6. Compute L5

0;3, L
6
1;3, and L

6
2;3.

7. For all 216 combinatios of L6
0;3 and L

6
3;3:

8. i := 0; reject := false;
9. while i � 31 and reject=false:

begin

10. Compute

b[i] :=
M

A2Q5[i]

BO(A3; 3; L
6
1; L

5
0;1):

11. If b[i] = 0 then i := i+1
else reject := true.

end (� while �).
12. If reject=false then stop (� and accept key bytes �).

The analysis of the attack is essentially the same as its counterpart
for RD-256. The only di�erence is that the loop in step 7 is iterated 216

times instead of 232. So the attack needs the time of about

232 � 2128 � 216 � 1 � 28 = 2184 basic operations.

7 Final Comments, Summary, and Conclusion

In [3], the authors of Rijndael described the Square-6 attack for RD-128.
Extensions of this attack for RD-192 and RD-256 were missing, though.
The target of the current paper is to close this gap.

The attacks described in this paper are highly impractical. Consid-
ering even such certi�cational attacks as ours is good scienti�c practice.
And the design of Rijndael was determined \by looking at the maximum
number of rounds for which shortcut attacks have been found" [3, Chap-
ter 7.6], allowing an additional margin of security. Any attack which is
faster than exhaustive search counts as \shortcut attack".
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Attack target # Rounds # Chosen Time Memory
Plaintexts [# basic operations] [# Ciphertexts]

simple Square generic 4 28 small small

ext. at the end generic 5 5 � 28 248 small

Square-6 generic 6 232 280 232

7-round generic 7 232 2208 232

RD-192 7 232 2184 232

RD-256 7 232 2200 232

Table 2. Summary of Results.

Table 2 summarises how the di�erent attacks perform. The results
for 4{6 rounds of Rijndael originate from [3]. Note that [3] counted the
number of \cipher executions" to measure the running time.

In [5], Fergusen and others describe improved attacks on Rijndael. A
preliminary version of [5] has been sent to the current author by one of
the authors of [5], and the following remarks are base on that version.
[5] describes some weaknesses of the Rijndael key schedule, but does not
exploit these for actual attacks. The attacks in [5] are mainly based on
improvements of the Square-6 attack, using the \partial sums". E.g., an
attack on seven rounds of Rijndael is proposed, which requires 232 chosen
plaintexts and the time equivalent to 2170 trial encryptions. Using the
observations made in the current paper, this attack can be improved by
a factor of 216, i.e., only needs the equivalent of 2156 trial encryptions,
instead of 2170.

Our results exhibit a weakness in the Rijndael key schedule. If, e.g.,
the wordsW [�] of the expanded key were generated pseudorandomly using
a cryptographically secure pseudorandom bit generator, dedicated attacks
could not be more eÆcient than their generic counterparts.

This does not indicate the necessity to modify the Rijndael key sched-
ule, though. The improvements on the generic case are quite small. If we
concentrate on counting the number of rounds for which shortcut at-
tacks exist, the cryptanalytic gain of this paper is one round for RD-192,
not more. The authors of Rijndael seem to have anticipated such crypt-
analytic results by specifying a high security margin for the number of
rounds (two additional rounds for RD-192, compared to RD-128 with its
ten rounds).
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Abstract

Rijndael is one of the �ve candidate blockciphers selected by NIST for
the �nal phase of the AES selection process. The best attack of Rijndael
so far is due to the algorithm designers ; this attack is based upon the
existence of an eÆcient distinguisher between 3 Rijndael inner rounds and
a random permutation, and it is limited to 6 rounds for each of the three
possible values of the keysize parameter (128 bits, 196 bits and 256 bits).
In this paper, we construct an eÆcient distinguisher between 4 inner
rounds of Rijndael and a random permutation of the blocks space, by
exploiting the existence of collisions between some partial functions in-
duced by the cipher. We present an attack based upon this 4-rounds
distinguisher that requires 232 chosen plaintexts and is applicable to up
to 7-rounds for the 196 keybits and 256 keybits version of Rijndael.
Since the minimal number of rounds in the Rijndael parameter settings
proposed for AES is 10, our attack does not endanger the security of the
cipher, indicate any 
aw in the design or prove any inadequacy in selec-
tion of number of rounds. The only claim we make is that our results
represent improvements of the previously known cryptanalytic results on
Rijndael.

1 Introduction

Rijndael [DaRi98], a blockcipher designed by Vincent Rijmen and Joan Daemen,
is one of the 5 �nalists selected by NIST in the Advanced Encryption Standard
competition [AES99]. It is a variant of the Square blockcipher, due to the same
authors [DaKnRi97]. It has a variable block length b and a variable key length
k, which can be set to 128, 192 or 256 bits. The recommended nr number of
rounds is determined by b and k, and varies between 10 and 14. In the sequel
we will sometimes use the notation Rijndael/b/k/nr to refer to the Rijndael
variant determined by a particular choice of the b, k and nr parameters.
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The best Rijndael attack published so far is due to the algorithm designers
[DaRi98]. It is a variant of a the "Square" attack, and exploits the byte-oriented
structure of Rijndael [DaKnRi97]. This attack is based upon an eÆcient distin-
guisher between 3 Rijndael inner rounds and a random permutation. It is stated
in [DaRi98] that "for the di�erent block lengths of Rijndael no extensions to 7
rounds faster than exhaustive search have been found".
In this paper we describe an eÆcient distinguisher between 4 Rijndael inner
rounds and a random permutation, and we present resulting 7-rounds attacks
of Rijndael/b=128 which are substantially faster than an exhaustive key search
for the k = 196 bits and k = 256 bits versions and marginally faster than an
exhaustive key search for the k = 128 bits version.

This paper is organised as follows. Section 2 provides an outline of the
cipher. Section 3 investigates partial functions induced by the cipher and the
existence of collisions between such partial functions, and describes a resulting
distinguisher for 4 inner rounds. Section 4 presents 7-rounds attacks based on
the 4-rounds distinguisher of Section 3. Section 5 concludes the paper.

2 An outline of Rijndael/b = 128

In this Section we brie
y described the Rijndael algorithm. We restrict our
description to the b=128 bits blocksize and will consider no other blocksize in
the rest of this paper.
Rijndael/b/k/nr consists of a key schedule and an iterated encryption function
with nr rounds. The key schedule derives nr+1 128-bit round keys K0 to Knr

from the k = 128; 196 or 256 bits long Rijndael key K. Since attacks presented
in the sequel do not use the details of the dependence between round keys, we
do not provide a description of the key schedule.
The Rijndael encryption function is the composition of nr block transformations.
The current 128-bit block value B is represented by a 4� 4 matrix :

B =

b0;0 b0;1 b0;2 b0;3
b1;0 b1;1 b1;2 b1;3
b2;0 b2;1 b2;2 b2;3
b3;0 b3;1 b3;2 b3;3

The de�nition of the round functions involves four elementary mappings :

� the �=ByteSub byte substitution transforms each of the 16 input bytes
under a �xed byte permutation P (the Rijndael S-box).

� the �=ShiftRow rows shift circularly shifts row i (i = 0 to 3) in the B

matrix by i bytes to the right.

� the �=MixColumn is a matrix multiplication by a �xed 4 � 4 matrix of
non-zero GF(28) elements.

� the �r=KeyAddition is a bitwise addition with a 128-bit round key Kr.
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The Rijndael cipher is composed by an initial round key addition �0, nr� 1
inner rounds and a �nal transformation. The rth inner round (1 � r � nr � 1)
is de�ned as the �r Æ � Æ � Æ � function. The �nal transformation at the round
nr is an inner round without MixColumn mapping : FinalRound = �nr Æ � Æ �.
We can thus summarise the cipher as follows:

B:=�0(B);
For r = 1 to nr � 1

B:=InnerRound(B);
FinalRound(B);

Remarks :

� � is the single non GF (8)-linear function of the whole cipher.

� The Rijndael S-box P is the composition of the multiplicative in-
verse function in GF(8) (NB : '00' is mapped into itself) and a �xed
GF(2)-aÆne byte transformation. If the aÆne part of P was omit-
ted, algebraic methods (e.g. interpolation attacks) could probably
be considered for the cryptanalysis of Rijndael.

� The � Æ � linear part of Rijndael appears to have been carefully de-
signed. It achieves a full di�usion after 2 rounds, and the Maximum
Distance Separability (MDS) property of � prevents good di�eren-
tial or linear "characteristics" since it ensures that two consecutive
rounds involve many active S-boxes.

3 Distinguishing 4 inner rounds of Rijndael/b=128
from a random permutation

3.1 Notation

Figure 1 represents 4 consecutive inner round functions of Rijndael associated
with any 4 �xed unknown 128-round keys. Y; Z;R; S represent the input blocks
of the 4 rounds and T represents the output of the 4th round. We introduce
short notations for some particular bytes of Y; Z;R; S; T , which play a particular
role in the sequel : y = Y0;0, z0 = Z0;0, z1 = Z1;0, z2 = Z2;0, z3 = Z3;0, and
so on. Finally we denote by c the (c0 = Y1;0, c1 = Y2;0, c2 = Y3;0) triplet of Y
bytes.

Let us �x all the Y bytes but y to any 11-uple of constant values. So the c
triplet is assumed to be equal to a constant c = (c0; c1; c2) triplet, and the 12
Yi;j , i=1 to 3, j=0 to 3 are also assumed to be constant. The Z;R; S; T bytes z0
to z3, r0 to r3, s, and t0 to t3 introduced in Figure 1 can be seen as c-dependent
functions of the y input byte. In the sequel we sometimes denote by zc0[y] to
zc3[y], r

c
0[y] to r

c
3[y], s

c[y], tc0[y] to t
c
3[y] the zi, ri, s, ti byte value associated with

a c constant and one y 2 0::255 value.
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Figure 1: 4 inner rounds of Rijndael
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3.2 The 3-rounds distinguisher used in the Rijndael/b=128
designers' attack

The Rijndael designers' attack is based upon the observations that :
- bytes z0 to z3 are one to one functions of y and the other Z bytes are constant.
- bytes r0 to r3 are one to one functions of y (as well as the 12 other R bytes).

- s is the XOR of four one to one functions of y and thus
P255

y=0 s[y] = 0.
Thus 3 consecutive inner rounds of Rijndael have the distinguishing property

that if all Y bytes but y are �xed and y is taken equal to each of the 256 possible
values, then the sum of the 256 resulting s values is equal to zero.

This leads to a 6-rounds attack (initial key addition followed by 5 inner
rounds followed by �nal round). As a matter of fact an initial round (i.e. an ini-
tial key addition followed by 1 inner round) can be added on top, at the expense
of testing assumptions on 4 key bytes of the initial key addition. Moreover, two
additional rounds can be added at the end (namely one additional inner round
followed by one �nal round), at the expense of testing assumptions on 4 �nal
round key bytes. Combining both extensions provides an attack which requires
232 plaintexts and has a complexity of 272 encryptions.

3.3 A 4-rounds distinguisher for Rijndael/b = 128

We now analyse in detail the dependency of the byte oriented functions intro-
duced in Section 3.1 in the c constant and the expanded key. We show that the
sc[y] function is entirely determined by a surprisingly small number of unknown
bytes, which either only depend upon the key or depend upon both the key
and the c value, and that as a consequence there exist (c0; c00) pairs of distinct c
values such that the sc

0

[�] and sc
00

[�] partial functions collide, i.e. sc
0

[y] = sc
00

[y]
for y = 0; 1; � � � ; 255. This provides an eÆcient test for distinguishing 4 inner
rounds of Rijndael from a random permutation.

The construction of the proposed distinguisher is based upon the following
observations, which are illustrated in Figure 1.

Property 1 : At round 1, the y ! zc0[y] one to one function is independent of
the value of the c triplet and is entirely determined by one key byte. The
same property holds for z1; z2; z3. This is because at the output of the
�rst round ShiftRow the c0 to c2 constants only a�ect columns 1 to 3 of
the current block value, whereas the z0 to z3 bytes entirely depend upon
column 0. For similar reasons, the other bytes of Z are independent of y :
each of the bytes of column 1 (resp 2, resp 3) of Z is entirely determined
by the c0 (resp c1, resp c2) byte and one key-dependent byte.
More formally, there exist 16 MixColumn matrix coeÆcients ai;j ,i=0..3,
j=0..3 and 16 key-dependent constants bi;j , i=0..3, j=0..3 such that zi =
ai;0P (y) + bi;0, i=0..3 and zi;j = ai;0P (cj�1) + bi;j , i=1..3, j=0..3.

Property 2 : At round 2, each of the four bytes ri[y], i = 0::3 is a one to one
function of zi[y], and the ri[y]! zi[y] is entirely determined by one single
unknown constant byte that is entirely determined by c and the key.
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More formally, there exist 16 MixColumn coeÆcients �i, i = 0::3, �i,
i = 0::3 
i, i = 0::3 and Æi, i = 0::3 and 4 key-dependent constants �i,
i = 0::3 such that ri = �i �P (zi;0)+�i �P (zi;1)+
i �P (zi;2)+Æi �P (zi;3)+�i,
i = 0::3. The ri bytes are thus related to c and y by the relations :
ri = �i � P (ai;0P (y) + bi;0) + �i � P (ai;1P (c0) + bi;1) + 
i � P (ai;2P (c1) +
bi;2) + Æi � P (ai;3P (c2) + bi;3) + �i, i = 0::3.
Consequently, the r0[y] to r3[y] one to one functions of y are entirely de-
termined by the 4 key-dependent constant unknown bytes bi;0 introduced
in property (1) and the 4 c- and k-dependent bytes bi = �i �P (ai;1P (c0)+
bi;1) + 
i � P (ai;2P (c1) + bi;2) + Æi � P (ai;3P (c2) + bi;3) + �i, i= 0 � �3.

Property 3 : At round 3, the s byte can be expressed as a function of the r0
to r3 bytes and one c-independent and key-dependent unknown constant.
Consequently, the sc[y] function is entirely determined by 4 key-dependent
and c-dependent constants and 5 c-independent and key-dependent con-
stants.

Property 4 : Let us consider the decryption of the fourth inner round : s can
be expressed as s = p�1[(0E:t0 + 0B:t1 + 0D:t2 + 09:t3) + k5] where p

represents the single S-box. In other words 0E:t0 + 0B:t1 + 0D:t2 + 09:t3
is a one to one function of s, and that function is entirely determined by
one single key byte k5. Thus 0E:t0 + 0B:t1 + 0D:t2 + 09:t3 is a function
of y that is entirely determined by 6 unknown bytes which only depend
upon the key and by 4 additional unknown bytes which depend both upon
c and the key.

The above properties provide an eÆcient 4-rounds distinguisher. We can
restate property (3) in saying that the sc[y] function is entirely determined (in
a key-dependent manner) by the 4 c-dependent bytes b0 to b3. Let us make
the heuristic assumption that these 4 unknown c-dependent bytes behave as a
random function of the c triplet of bytes. By the birthday paradox, given a C

set of about 216 c triplet values, there exist with a non negligible probability
two distinct c0 and c00 in C such that the sc

0

[y] and sc
00

[y] functions induced
by c0 and c00 are equal (i.e. in other words such that the (sc

0

[y])y=0::255 and

(sc
00

[y])y=0::255 lists of 256 bytes are equal). Property (4) provides a method to
test such a "collision", using the t0 to t3 output bytes of 4 inner rounds : c0

and c00 collide if and only if 8y 2 [0; :::; 255], 0E:tc
0

0 + 0B:tc
0

1 + 0D:tc
0

2 + 09:tc
0

3 =
0E:tc

00

0 + 0B:tc
00

1 + 0D:tc
00

2 + 09:tc
00

3 . Note that it is suÆcient to test the above
equality on a limited number of y values (say 16 for instance) to know with a
quite negligible "false alarms" probability whether the sc

0

[y] and sc
00

[y] func-
tions collide.

We performed some computer experiments which con�rmed the existence, for
arbitrarily chosen key values, of (c0; c00) pairs of c value such that the sc

0

[y]
and sc

00

[y] functions collide. For some key values, we could even �nd four byte
values c01, c

0

2, c
00

1 and c002 such that for each of the 256 possible values of the
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c0 byte, the sc
0

[y] and sc
00

[y] functions associated with the c0 = (c0; c
0

1; c
0

2) and
c00 = (c0; c

00

1 ; c
00

2) triplets of bytes collide. This stronger property, which is rather
easy to explain using the expression of the bi constants introduced in Property
(2), is not used in the sequel.

The proposed 4 rounds distinguisher uses the collision test derived from
property (4) is the following manner :

� select a C set of about 216 c triplet values and a subset of f0..255g, say
for instance a � subset of 16 y values.

� for each c triplet value, compute the Lc = (0E:tc0 + 0B:tc1 + 0D:tc2 +
09:tc3)y2�. We claim that such a computation of 16 linear combinations
of the outputs represents substantially less than one single Rijndael oper-
ation.

� check whether two of the above lists, Lc0 and Lc00 are equal. The 4 round
distinguisher requires about 220 chosen inputs Y , and since the collision
detection computations (based on the analysis of the corresponding T

values) require less operations than the 220 4-inner rounds computations,
the complexity of the distinguisher is less than 220 Rijndael encryptions.

Note that property (4) also provides another method to distinguish 4 inner
round from a random permutation, using N � 256 plaintexts and 280 N oper-
ations, namely performing an exhaustive search of the 10 unknown constants
considered in property (4). Note that a value such as N = 16 is far suÆcient in
practice. However, we only consider in the sequel the above described birthday
test, which provides a more eÆcient distinguisher.

4 An attack of the 7-rounds Rijndael/b=128 ci-
pher with 2

32 chosen plaintexts

In this Section we show that the 4 inner rounds distinguisher of Section 3 pro-
vides attacks of the 7-rounds Rijndael for the b=128 blocksize and the various
keysizes. We present two slightly di�erent attacks. The �rst one (cf Section 4.2
hereafter) is substantially faster than an exhaustive search for the k=196 and
k=256 keysizes, but slower than exhaustive search for the k=128 bits keysize.
The second attack (cf Section 4.2) is dedicated to the k=128 keysize, and is
marginally faster than an exhaustive search for that keysize.

The 7-rounds Rijndael is depicted at Figure 2. X represents a plaintext
block, and V represents a ciphertext block. In Figure 2 the 4 inner rounds of
Figure 1 are surrounded by one initial X ! Y round (which consists of an initial
key addition followed by one round), and two �nal rounds (which consist of one
T ! U inner round followed by an U ! V �nal round).

Our attack method is basically a combination of the 4-round distinguisher
presented in Section 3 and an exhaustive search of some keybytes (or combina-
tions of keybytes) of the initial and the two �nal rounds. In the attack of Section
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Figure 2: 7-rounds Rijndael
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4.1 we are using the property that in the equations provided by the 4-rounds
distinguisher there is a variables separations in terms which involve one half of
the 2 last rounds key bytes and terms which involve a second half of the 2 last
round key bytes in order to save a 280 factor in the exhaustive search complexity.
In the attack of Section 4.2, we are using precomputations on colliding pairs of c
values to test each 128-bits key assumption with less operations than one single
Rijndael encryption.

4.1 An attack of the 7-rounds Rijndael/b=128/k=196 or
256 with 232 chosen plaintexts and a complexity of
about 2140

We now explain the attack procedure in some details, using the notation intro-
duced in Figure 2. We �x all X bytes except the four bytes x0 to x3 equal to 12
arbitrary constant values. We encrypt the 232 plaintexts obtained by taking all
possible values for the x0 to x3 bytes, thus obtaining 232 V ciphertext blocks.
We are using the two following observations :

Property 5 : If the 4 key bytes added with the x0 to x3 bytes in the initial
key addition are known (let us denote them by kini = (k0; k1; k2; k3),
then it is possible to partition the 232 plaintexts in 224 subsets of 256
plaintext values satisfying the conditions of Section 3, i.e. such that the
corresponding 256 Y values satisfy the following conditions :
- the y byte takes 256 distinct values (which are known up to an unknown
constant �rst round key byte which is not required for the attack).
- the c = (c0; c1; c2) triplet of bytes is constant ; moreover, each of the
224 subsets corresponds to a distinct c value (the c value corresponding to
each subset is known up to three constant �rst round keybytes which are
not required for the attack).
- the 12 other Y bytes are constant and their constant values Yi;j for i=1..3
and j=0..3 is the same for all subsets.
Note that the same property is used in the Rijndael designers' attack.

Property 6 : Each of the t0; t1; t2; t3 bytes can be expressed as a function of
four bytes of the V ciphertext and �ve unknown key bytes (i.e. 4 of the
�nal round key bytes and one linear combination of the penultimate round
key bytes). Therefore, we can "split" the tc[y] =0 0E0:tc0[y] +

0 0B0:tc1[y] +
0

0D0:tc2[y] +
0 090:tc3[y] combination of the four tci [y] bytes considered in the

4-rounds distinguisher as the XOR of two terms �c1 [y] and �c2 [y] which can
both be expressed as a function of 8 ciphertext bytes and 10 unknown key
bytes, namely �1 =

0 0E0:tc0[y] +
0 0B0:tc1[y] and �2 =

0 0D0:tc2[y] +
0 090:tc3[y].

We denote in the sequel by k�1 those 10 unknown keybytes which allow to
derive �1 from 8 bytes of the V ciphertext, and by k�2 those 10 keybytes
which allow to derive �1 from 8 bytes of the V ciphertext.

We perform an eÆcient exhaustive search of the kini, k�1 and k�2 keys in the
following way :
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� For each of the 232 possible kini assumptions, we can partition the set of
the 2564 possible X values in 2563 subsets of 256 X values each, according
to the value of the c constant, and select say 2562 of these 2563 subsets.
Thus each of the 2562 selected subsets is associated with a distinct value
of the c constant. Note that the c value associated with a subset and the y
values associated with each of the X plaintexts of a subset are only known
up to unknown keybits, but this does not matter for our attack. We can
denote by c� and y� the known values which only di�er from the actual
values by �xed unknown key bits.

� Now for each subset associated with a c� constant triplet, based on the
say 16 ciphertexts associated with the y� = 0 to y� = 15 values, we
can precompute the (� c1 (y))y�=0::15 16-tuple of bytes for each of the 280

possible k�1 keys. We can also precompute the (�c2 (y))y�=0::15 16-tuple for
each of the 280 possible k�2 keys.

Based on this precomputation, for each (c0�; c00�) pair of distinct c* values :

� We precompute a (sorted) table the (�c
0

1 (y) � �c
00

1 (y))y�=0::15 16-tuple of
bytes for each of the 280 possible k�1 keys (the computation of each 16-
tuple just consists in xoring two precomputed values)

� For each of the 280 possible values of the k�2 key, we compute the (�
c0

2 (y)�
�c

00

2 (y))y�=0::15 16-tuple of bytes associated with the observed ciphertext,
and check whether this t-uple belongs to the precomputed table of 16-
tuple (�c

0

1 (y) � �c
00

1 (y))y�=0::15. If for a given k�1 value there exists a k�2
value such that (� c

0

1 (y) � �c
00

1 (y))y�=0::15 = (�c
0

2 (y) � �c
00

2 (y))y�=0::15, (i.e.

tc
0

[y] = tc
00

[y] for each of the y values associated with y� = 0 to 16, this
represents an alarm). The equality between the t bytes associated with c0

and c00 is checked for the other y� values. If the equality is con�rmed, this
means that a collision between the sc[y] functions associated with c0 and
c00. This provides 20 bytes of information on the last and penultimate key
values, since with overwhelming probability, the right values of kini, k�1
and k�2 have then been found.

Since the above procedure tests whether the exist collisions inside a random set
of 2562 of the 2564 possible sc[y] functions, the probability of the procedure to
result in a collision, and thus to provide kini, k�1 and k�2 is high (say about
1/2). In other words, the success probability of the attack is about 1/2.

Once kini, k�1 and k�2 have been found, the 16-bytes �nal round key is
entirely determined and the �nal round can be decrypted, so one is left with the
problem of cryptanalysing the 6-round version of Rijndael. One might object
that the last round of the left 6-round cipher is not a �nal round, but an inner
round. However, it is easy to see that by applying a linear one to one change of
variable to U and the 6th round key (i.e. replacing U by a U 0 linear function
of U and K6 by a linear function K 0

6 of K6), the last round can be represented
as a �nal round (i.e. U 0 is the image of T by the �nal round associated with
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K 0

6). Thus we are in fact left with the cryptanalysis of the 6-round Rijndael,
and the last round subkey is easy to derive. The process of deriving the subkeys
of the various rounds can then be continued (using a subset of the 232 chosen
plaintexts used for the derivation of kini, k�1 and k�2), with negligible additional
complexity, until the entire key has eventually been recovered.

4.2 An attack of the 7-rounds Rijndael/b=128/k=128 232

chosen plaintext

We now outline a variant of the former attack that is dedicated to the k=128
bits version of Rijndael and is marginally faster than an exhaustive search. This
attack requires a large amount of precomputations.

As a matter of fact, it can be shown that the 4 c-dependent bytes that de-
termine the mapping between four zci [y] bytes and the four rci [y] are entirely
determined by 12 key-dependent (and c-independent) bytes. For each of the
25612 possible values of this �(K) 12-tuple of bytes, we can compute colliding
c0 and c00 triplets of bytes (this can be done performing about 2562 partial Ri-
jndael computations corresponding to say 2562 distinct c values and looking for
a collision. One can accept that no collision be found for some �(K) values :
this just means that the attack will fail for a certain fraction (say 1/2) of the
key values. We store c0 and c00 (if any) in a table of 25612 �(K) entries.

Now we perform an exhaustive search of the K key. To test a key assump-
tion, we compute the kini, k�1 , k�2 and �(K) values. Then we �nd the (c0; c00)
pair of colliding c values in the precomputed table, compute the two associ-
ated c0� and c00 values, determine which two precomputed lists (V c0

[y])y�=0::15
(V c00

[y])y�=0::15of 16 ciphertext values each are associated with c0� and c00�,

and �nally compute the associated (tc
0

[y])y�=0::15 and (tc
00

[y])y�=0::15 bytes by
means of partial Rijndael decryption. The two values associated with y� = 0 are
�rst computed and compared. The two values associated with y� = 1 are only
computed and compared if they are equal, etc, thus in average only two partial
decryption are performed. It the two lists of 16 t bytes are equal, then there is
an alarm, and the K is further tested with a few plaintexts and ciphertexts.

We claim than the complexity of the operations performed to test one K

key is marginally less than one Rijndael encryption.

5 Conclusion

We have shown that the existence of collisions between some partial byte ori-
ented functions induced by the Rijndael cipher provides a distinguisher between
4 inner rounds of Rijndael and a random permutation, which in turn enables to
mount attacks on a 7-rounds version of Rijndael for any key-length.
Unlike many recent attacks on block ciphers, our attacks are not statistical in
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nature. They exploit (using the birthday paradox) a new kind of cryptanalytic
bottleneck, namely the fact that a partial function induced by the cipher (the
sc[y] function) is entirely determined by a remarkably small number of unknown
constants. Therefore, unlike most statistical attacks, they require a rather lim-
ited number of plaintexts (about 232). However, they are not practical because
of their high computational complexity, and do not endanger the full version of
Rijndael. Thus we do not consider they represent arguments against Rijndael
in the AES competition.
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Abstract

We propose a new method for evaluating the security of block ciphers against di�er-
ential cryptanalysis and propose new structures for block ciphers. To this end, we de�ne
the word-wise Markov (Feistel) cipher and random output-di�erential (Feistel) cipher and
clarify the relations among the di�erential, the truncated di�erential and the impossible
di�erential cryptanalyses of the random output-di�erential (Feistel) cipher. This random
output-di�erential (Feistel) cipher model uses a not too strong assumption because denying
this approximation model is equivalent to denying truncated di�erential cryptanalysis. U-
tilizing these relations, we evaluate the truncated di�erential probability and the maximum
average of di�erential probability of the word-wise Markov (Feistel) ciphers like Rijndael,
E2 and the modi�ed version of block cipher E2. This evaluation indicates that all three are
provably secure against di�erential cryptanalysis, and that Rijndael and a modi�ed version
of block cipher E2 have stronger security than E2.

keywords. truncated di�erential cryptanalysis, truncated di�erential probability, max-
imum average of di�erential probability, generalized E2-like transformation, SPN-structure,
word-wise Markov cipher, random output-di�erential cipher

1 Introduction

As a measure of the security of block ciphers, the maximum average of di�erential probability
was de�ned by Nyberg and Knudsen [15] by generalizing provable security against di�erential
cryptanalysis as introduced by Biham and Shamir [2]. Based on this idea, many new block
ciphers have been proposed, e.g. the block cipher MISTY was proposed by M. Matsui [10].
It was designed on the basis of the theory of provable security against di�erential and linear
cryptanalysis.

The block cipher E2 was proposed in [6] as an AES candidate. This cipher uses Feistel
structures as a global structure like DES, and uses the SPN (Substitution and Permutation
Network)-structure in its S-boxes. [6] said this cipher can be 'proved' to o�er immunity
against di�erential cryptanalysis by counting the maximum number of active S-boxes. How-
ever, Sugita proposed a method for evaluating the maximux average of di�erential probability
of SPN-structures, and then evaluated the SPN-structure of E2[16, 17]. Using the similar
method, Matsui stated that 8-rounds E2 can be defeated by truncated di�erential cryptanal-
ysis [19, 14], which implies that just counting the maximum number of active S-boxes is not
su�cient for proving the security of block ciphers.
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The block cipher Rijndael was also proposed as an AES candidate [3]. This cipher uses
the SPN (Substitution and Permutation Network)-structure as its basic structure. The basis
for proving its security against di�erential cryptanalysis involves a similar evaluation method
as used for E2. Therefore more accurate proof is necessary.

In this paper, we introduce the word-wise Markov (Feistel) cipher and random output-
di�erential (Feistel) cipher as a approximation model for the accurate de�nition of truncated
di�erential probability, and clarify the relationships among di�erential, truncated di�erential
and impossible di�erential cryptanalyses, and propose a new method for evaluating the
security of block ciphers against di�erential, truncated di�erential and impossible di�erential
cryptanalysis under this model, and propose new structures for block ciphers that are secure
against these cryptanalyses. This random output-di�erential (Feistel) cipher model does not
use too strong an assumption because denying this model is equivalent to denying truncated
di�erential cryptanalysis.

This report is organized as follows.
Section 2 de�nes the structures of word-oriented block ciphers like SPN-Structures, PSN-

structures and the E2(0)-like transformation.
Section 3 de�nes the di�erential probability, and de�nes the word-wise Markov (Feistel)

cipher, random output-di�erential (Feistel) cipher, and using these de�nitions, de�nes the
truncated di�erential probability.

Section 4 clari�es the relations between the truncated di�erential probability and the
di�erential probability of the random output-di�erential (Feistel) cipher. It then describes
a procedure for calculating the truncated di�erential probability and (maximum average of)
the di�erential probability of typical random output-di�erential ciphers like SPN-structures
including Rijndael and E2(0)-like transformations. It proves that both Rijndael and the
modi�ed E2-like transformation are provably secure against di�erential, truncated di�erential
and impossible di�erential cryptanalysis if they can be approximated as random output-
di�erential (Feistel) ciphers.

Section 5 concludes this paper.

2 Structures of Word-oriented Block Ciphers

2.1 Word-oriented Block Ciphers

A word-oriented block cipher is a block cipher whose input and output data is a set of input
words of �xed size, and whose operations consist only of word-wise operations of �xed size.
In the usual case, the word size is 8, i.e. byte size. Example of these ciphers include Rijndael,
E2, etc.

2.2 Feistel Structures

Associate with a function f : GF (2)n ! GF (2)n, a function �2n;f (L;R) = (R� f(L); L) for
all L;R 2 GF (2)n. �2n;f is called the Feistel transformation associated with f . Furthermore,
for functions f1; f2; � � � ; fs : GF (2)

n ! GF (2)n, de�ne  n(f1; f2; � � � ; fs) = �2n;fs�� � ���2n;f2�
�2n;f1 . We call D(f1; f2; � � � ; fs) =  n(f1; f2; � � � ; fs) as the s-round Feistel structure. At this
time, we call the functions f1; f2; � � � ; fs as S-boxes of the Feistel structure D(f1; f2; � � � ; fs).

2.3 SPN-Structures and PSN-Structures

[11] de�nes SPN-Structures. First we de�ne the 3-layer SPN-structure.
This structure consists of two kinds of layers, i.e. nonlinear layer and bijective linear

layer. Each layer has di�erent features as follows.
Nonlinear layer: This layer is composed of m parallel n-bit bijective nonlinear trans-

formations.
Linear layer: This layer is composed of linear transformations over the �eld GF (2n)

(especially in the case of E2, bit-wise XOR), where inputs are transformed linearly to outputs
per word (n-bits).



Next for s 2 N we de�ne the s-layer SPN-structure, which consists of s layers. First is a
nonlinear layer, second is a linear layer, third is a nonlinear layer, � � � .

Similarly, for s 2 N we de�ne the s-layer PSN-structure. This layer consists of s layers.
First is a linear layer, second is a nonlinear layer, third is a linear layer, � � �.

The SPN-structure is the basic structure of Rijndael, a candidate for AES. We will analyze
the security of Rijndael afterwards.

2.4 E2(0)-like Transformations

[6] proposed the block cipher E2. This cipher has Feistel structures and its S-boxes are
composed of 3-layers SPN structures. We generalize this structure, and de�ne E2-like trans-
formations as Feistel structure with S-boxes composed of s-layers (in the case of E2, 3-layers)
SPN-structures.

Similarly, we de�ne E20-like transformations as Feistel structures with S-boxes composed
of s-layer PSN-structures.

3 Di�erential Probability, Truncated Di�erential Prob-

ability, Word-wise Markov (Feistel) Cipher and Random
Output-Di�erential (Feistel) Cipher

This section de�nes the (maximum average of) di�erential probability, truncated di�eren-
tial probability, word-wise (Feistel) Markov cipher and random output-di�erential (Feistel)
cipher.

3.1 Di�erential Probability of Block Ciphers

We de�ne the di�erential of block ciphers. We consider the encryption of a pair of distinct
plaintexts by an r-round iterated cipher. Here the round function Y = f(X;Z) is such that,
for every round sub-key Z, f( � ; Z) establishes a one-to-one correspondence between the
round input X and the round output Y . Let the \di�erence" �X between two plain-texts
(or two cipher texts) X and X� be de�ned as

�X = X �X�:

From the pair of encryption results, one obtains the sequence of di�erences �X(0);�X(1);
� � � ;�X(r) where X(0) = X and X(0)� = X� denote the plaintext pair (such that �X(0) =
�X) and where X(i) and X�(i) for (0 < i < r) are the outputs of the i-th round, which are
also the inputs to the (i+ 1)-th round. The sub-key for the i-th round is denoted as Z(i).

Next we de�ne the i-th round di�erential and maximum average of di�erential probabil-
ities.

De�nition 1 [7] An i-round di�erential is the couple (�; �), where � is the di�erential of a
pair of distinct plaintexts X and X� and � is a possible di�erence for the resulting i-th round
outputs X(i) and X�(i). The probability of an i-round di�erential (�; �) is the conditional
probability that � is the di�erence, �X(i), of the cipher text pair after i rounds given that
the plaintext pair (X;X�) has di�erence �X = � when the plaintext X and the sub-keys
Z(1); � � � ; Z(i) are independent and uniformly random. We denote this di�erential probability
by P (�X(i) = �j�X = �).

The probability of an s-round di�erential is known to satisfy the following property.

Lemma 1 [7] For the Markov cipher, the probability of an s-round di�erential equals

P (�X(s) = �(s)j�X(0) = �(0)) =

X
�(1)

X
�(2)

� � �
X

�(s�1)

sY
i=1

P (�X(i) = �(i)j�X(i� 1) = �(i� 1)):



We de�ne the maximum average of di�erential probability as follows. This value is known to
be the best measure with which to con�rm that block ciphers are secure against di�erential
cryptanalysis.

De�nition 2 [15] We de�ne the maximum average of di�erential probability ADP
(s)
max by

ADP(s)
max = max�6=0;�P (�X(s) = �j�X = �):

3.2 Word-wise Markov (Feistel) Cipher

[5] uses the truncated di�erential for the cryptanalysis of word-oriented block ciphers. How-
ever, the accurate de�nition of truncated di�erential probability is not o�ered because this
cryptanalysis is essentially based on approximation. In this subsection, in order to legitimate
this notion, we rede�ne the truncated di�erential probability of word-oriented block ciphers.

We consider the encryption of a pair of distinct plaintexts by an r-round iterated ci-
pher. Here the round function Y = f(X;Z) is such that, for every round sub-key Z =
(Z1; Z2; � � � ; Zm0) 2 GF (2n)m

0

, f( � ; Z) establishes a one-to-one correspondence between the
round inputX = (X1;X2; � � � ; Xm) 2 GF (2

n)m and the round output Y = (Y1; Y2; � � � ; Ym) 2
GF (2n)m.

We de�ne a characteristic function � : GF (2n)m ! GF (2)m; (x1; � � � ; xm) 7�! (y1; � � � ; ym)
by

yi =

�
0 if xi = 0
1 otherwise;

Hereafter, we call �(x) as a characteristic of x 2 GF (2n)m.
For the de�nition of the truncated di�erential probability, we de�ne the word-wise Markov

cipher as a real block-cipher model, in the same way as the Markov cipher was in [7]

De�nition 3 A word-oriented cipher with round function Y = f(X;Z)(X = (X1; X2; � � � ; Xm) 2
GF (2n)m; Y = (Y1; Y2; � � � ; Ym) 2 GF (2n)m; Z = (Z1; Z2; � � � ; Zm0) 2 GF (2n)m

0

), is a
word-wise Markov cipher if for all choices of � = (�1; �2; � � � ; �m) 2 GF (2n)m(� 6= 0),
� = (�1; �2; � � � ; �m) 2 GF (2

n)m(� 6= 0) and p 2 f1; 2; � � � ;m0g,

P (�Yp = �pj�X = �;X = 
)

is independent of 
, and P (�Yp = �pj�Yp 6= 0;�X = �;X = 
) (p = 1; 2; � � � ;m) are jointly
statistically independent when the sub-key Z is uniformly random, or, equivalently, if

P (�Yp = �pj�X = �;X = 
) = P (�Yp = �pj�X = �)

for all choices of 
 and P (�Yp = �pj�Yp 6= 0;�X = �) (p = 1; 2; � � � ;m) are jointly statisti-
cally independent when the sub-key Z is uniformly random, where�X = (�X1;�X2; � � � ;�Xm),
�Y = (�Y1;�Y2; � � � ;�Ym) are the di�erential of X, Y , respectively.

Example. the PSN-structure is a word-wise Markov cipher, if every bijective nonlinear
function in a nonlinear layer consists of a concatenation of XOR and substitution (like DES
does). Therefore, block cipher Rijndael and the S-boxes of block cipher E2 are also word-wise
Markov ciphers with the same kind of nonlinear functions.

We expand this de�nition to the Feistel cipher.

De�nition 4 We de�ne a word-wise Markov Feistel cipher as a Feistel cipher whose S-boxes
are word-wise Markov ciphers.

Example. E20-like transformation is a word-wise Markov Feistel cipher because the PSN-
structure is a word-wise Markov cipher if every nonlinear function in a nonlinear layer consists
of the concatenation of XOR of the key and substitution (like DES does).



3.3 Random Output-Di�erential (Feistel) Cipher

As preparation for de�ning the random output-di�erential cipher, we de�ne the random
output-di�erential transformation.

De�nition 5 A word-oriented transformation Y = g(X;Z) (X = (X1; X2; � � � ; Xm) 2
GF (2n)m; Y = (Y1; Y2; � � � ; Ym) 2 GF (2n)m; Z = (Z1; Z2; � � � ; Zm0) 2 GF (2n)m

0

), is a
random output-di�erential transformation, if for any input-di�erential value �, the following
relation is satis�ed,

P (�Y = �j�X = �) = ph(�(�))P (�(�Y ) = �(�)j�X = �);

when keys are randomly selected, where h is the function that indicates the Hamming weight of
the input value, p = 1=(2n�1), and �X = (�X1;�X2; � � � ;�Xm), �Y = (�Y1;�Y2; � � � ;�Ym)
are the di�erential of X, Y , respectively.

Using this de�nition, we de�ne the random output-di�erential cipher for word-oriented
block cipher as approximation model of word-wise Markov cipher.

De�nition 6 A word oriented cipher with round functions X(i + 1) = f(X(i); Z(i))(i =
0; 1; � � � ; r�1); where Z(i)(i = 0; 1; � � �) are sub-keys, is a random output-di�erential cipher if
for any random output-di�erential transformation X(0) = g(X;Z(0)), the composite trans-
formation X(1) = f(g(X;Z(0)); Z(1)) is also a random output-di�erential transformation.

At this time, we call a round function which composes a random output-di�erential cipher
by concatenating, as random output-di�erential round function.

We expand this de�nition to the Feistel cipher.

De�nition 7 A Feistel cipher with S-boxes Y = f(X;Z(i)) (i = 0; 1; � � �), where Z(i)(i =
0; 1; � � �) are sub-keys and i-th round output is X(i) = (X(i)L; X(i)R), is a random output-
di�erential Feistel cipher, if its S-boxes are random output-di�erential ciphers and the round
function of the Feistel cipher

(X(i+ 1)L; X(i+ 1)R) = (X(i)R; X(i)L � f(X(i)R; Z
(i)))

is a random output-di�erential round function.

Matsui stated in his presentation of [14] that 8-round E2 can be cryptanalyzed by truncat-
ed di�erential cryptanalysis only assuming randomness of keys. However, this is not accurate,
because he tacitly assumes this random output-di�erential cipher as an approximation model
of E2 in his explanation.

However, this approximation may be e�ective for word-wise Markov (Feistel) cipher like
E2, E20-like transformation and Rijndael. In fact, in the case of E20-like transformation
with 2-layer PSN-structures, which is also a word-wise Markov Feistel cipher for exam-
ple, let the �X 2 GF (2n)2m be a input di�erential of this cipher, if the input-di�erential
of S-box �W = (�W1;�W2; � � � ;�Wm) 2 GF (2n)m(�(�W ) = 
0 2 GF (2)m) is ran-
domly distributed with the probability P (�W = 
j�(�W ) = 
0;�X = �) = ph(


0) for
all 
 = (
1; 
2; � � � ; 
m) (where �(
) = 
0), then the output-di�erential of S-box �U =
(�U1;�U2; � � � ;�Um) 2 GF (2n)m (�(�U) = �0 2 GF (2)m) is supposed to be approxi-
mately random, i.e. approximately P (�U = �j�(�U) = �0;�X = �) = ph(�

0), where
� = (�1; �2; � � � ; �m); �(�) = �0 because, for the input-di�erential of nonlinear layer �W =
(�W1;�W2; � � � ;�Wm) 2 GF (2n)m, each P (�Wp = 
pj�(�W ) = 
0;�X = �) = p =
1=(2n � 1) implies P (�Up = �pj�(�U) = �0;�X = �) = p = 1=(2n � 1) and each
P (�Up = �pj�Wp = 
p 6= 0;�X = �) (
 = (
1; 
2; � � � ; 
m); �(
) = 
0) are jointly sta-
tistically independent from the de�nition of word-wise Markov cipher.

So we use this random output-di�erential cipher as an e�ective approximation model in
the following discussion.

Note. Matsui assumed the randomness of input-di�erential of nonlinear layers �W =
(�W1; � � � ;�Wm), i.e.

P (�W = 
j�(�W ) = 
0;�X = �) = ph(

0)P (�(�W ) = 
0j�X = �)



instead of the randomness of output-di�erential of nonlinear layers �U = (�U1; � � � ;�Um),
i.e.

P (�U = �j�(�U) = �0;�X = �) = ph(�
0)P (�(�U) = �0j�X = �)

in his presentation of [14]. The randomness of �W is a stronger assumption than the ran-
domness of �U , because, in the case of E20-like transformation with 2-layer PSN-structures
for example, the randomness of �W also implies the randomness of �U . Furthermore, the
randomness of �W may be too strong or even nonsense, because the randomness of input-
di�erentials of linear layer �W = (�W1; � � � ;�Wm) do not always yield the randomness of
input-di�erentials of nonlinear layer �U = (�U1; � � � ;�Um) : Two input-di�erential words
of nonlinear layers �Wp1 , �Wp2 (p1 6= p2) may be both random, i.e.

P (�Wp1 = 
p1 j�X = �) = P (�Wp2 = 
p2 j�X = �) = p = 1=(2n � 1)

but coincide, i.e. constantly �Wp1 = �Wp2 .
Therefore, we interpret Matsui's tacit assumption in his explanation as a random output-

di�erential (Feistel) cipher.

3.4 Truncated Di�erential Probability

Using these de�nitions, we can accurately de�ne the truncated di�erential probability. In
this de�nition, as a cipher model, we consider a cipher with a random output-di�erential
initial transformation X(0) = g(X;Z(0)), and a random output-di�erential round function
X(i+ 1) = f(X(i); Z(i))(i = 0; 1; � � � ; r � 1) where Z(i)(i = 0; 1; � � �) are sub-keys.

De�nition 8 Let X(0) = g(X;Z(0)) be an arbitrary random output-di�erential initial trans-
formation and X(i + 1) = f(X(i); Z(i)) be a round function such that X(r) = (f � � � � � f �
g)(X;Z(0); Z(1); � � � ; Z(r)) is also a random output-di�erential cipher for all r. An i-round
truncated di�erential of i-round iterated cipher X(r) = (f � � � � � f)(X(0); Z(1); � � � ; Z(r))
is the couple (�0; �0), where � is the di�erential of a pair of distinct values X(0) and
X�(0), �0 = �(�) is the characteristic of �; � is a possible di�erence for the resulting i-
th round outputs X(i) and X�(i); �0 = �(�) is the characteristic of �. The probability of
i-round truncated di�erential (�0; �0) is the conditional probability that �0 is the character-
istic of di�erence �X(i) of the cipher text pair after i rounds given that the characteristic
of pair (X(0); X(0)�) has di�erence �(�X) = �0 when the plaintext X and the sub-keys
Z(0); � � � ; Z(i) are independent and uniformly random. We denote this truncated di�erential
probability by P 0

i (�
0(i); �0(0)) = P (�(�X(i)) = �0(i)j�(�X(0)) = �0(0);�X = �).

This de�nition is well de�ned if we assume the random output-di�erential (Feistel) cipher.
Without the assumption, this is not well-de�ned, because two input-di�erential values with
same characteristic value do not always yield the same truncated di�erential probabilities.
We assume this model as an e�ective approximation model of a word-wise Markov cipher.

4 Truncated Di�erential Probability and Di�erential
Probability of Random Output-Di�erential (Feistel) Ci-

phers

4.1 Truncated Di�erential Probability of PSN-structures and Dif-
ferential Probability of SPN-structures

In this subsection, we evaluate the truncated di�erential probability of the 2s layer PSN-
structure and (the maximum average of) the di�erential probability of the (2s + 1) layer
SPN-structure, where we assume all random functions are bijective. In this calculation, we
�rst calculate the truncated di�erential probability of the 2s layer PSN-structure, and, using
this probability, we calculate (the maximum average of) the di�erential probability of the
(2s+ 1) layer SPN-structure.



We assume the �rst nonlinear layer is a random output-di�erential (initial) transforma-
tion, and the round functions, which are composed of a linear layer and a nonlinear layer, i.e.
2-layer PSN-structures, is a random output-di�erential round function. We denote �X as
the input-di�erential of the �rst nonlinear layer, �X(0) as the output-di�erential of the �rst
nonlinear layer, �X(1) as the output-di�erential of the second nonlinear layer, � � � ; �X(s)
as the output-di�erential of (s + 1)-th nonlinear layer, �Y (0) as the input-di�erential of
the �rst nonlinear layer, �Y (1) as the input-di�erential of the second nonlinear layer, � � � ;
�Y (s) as the input-di�erential of the (s+ 1)-th nonlinear layer.

We denote the di�erential probability of (2s+ 1)-layer SPN-structures as

Pi(�(i); �) = P (�X(i) = �(i)j�X = �):

We denote the truncated di�erential probability of 2s-layer PSN-structures as

P 0
i (�

0(i); �0(0)) = P (�(�X(i)) = �0(i)j�(�X(0)) = �0(0);�X = �):

The relation between di�erential probability and truncated di�erential probability can
be represented as follows, where �0(i) = �(�(i)) for all i = 0; 1; � � � ; s,

Pi(�(i); �) =X
�0(0)

P (�X(i) = �(i))j�(�X(i)) = �0(i);�X = �)

� P 0
i (�

0(i); �0(0)) � P (�(�X(0) = �0(0))j�X = �):

In this case, if we assume the initial transformation is a random output-di�erential trans-
formation and

P (�(�X(0)) = �0(0)j�X = �) =

�
1 if �0(0) = �(�)
0 otherwise;

as a natural approximation model of the �rst nonlinear layer, we can prove

Pi(�(i); �) = ph(�
0(i))P 0

i (�
0(i); �0);

because
P (�X(i) = �(i)j�(�X(i)) = �0(i);�X = �) = ph(�

0(i));

from the assumption of random output-di�erential cipher, where p = 1=(2n� 1) and h is the
function that indicates the Hamming weight of the input value.

This relation clearly indicates the relationship between the di�erential probability and
the truncated di�erential probability. From this relation we can easily calculate the di�er-
ential probability from the truncated di�erential probability in the case of random output-
di�erential cipher. This relation also implies that the possibility of truncated di�erential
cryptanalysis is equivalent to the possibility of di�erential cryptanalysis, because the ratio
of obtained probability to average probability do not change.

4.2 Procedure for Calculating Di�erential and Truncated Di�eren-
tial Probability of the SPN-structure

The procedure for calculating truncated di�erential probability and the maximum average
of the di�erential probability in case of the SPN structure is as follows.

For this procedure, we de�ne function N(P; 
; �) for m �m matrix P over GF (2n) and

; � 2 GF (2)m by

N(P; 
; �) = #f(�X;�Y ) 2 (GF (2n)m)2 n f0gj

�Y = P�X;�(�X) = 
; �(�Y ) = �g;



For this calculation we de�ne semi-order � in GF (2)m as follows.

a � b, (8i; (a(i) = 1) b(i) = 1)) ^ (a 6= b)

where we denote a(i) and b(i) as the i-th signi�cant bits of a and b, respectively.
For m�m matrix P over GF (2n) and 
; � 2 GF (2)m, we de�ne

M(P; 
; �) = #f(�X;�Y ) 2 (GF (2n)m)2 n f0gj

�Y = P�X;�(�X) � 
; �(�Y ) � �g;

and N(P; 
; �) can be calculated recursively, using the following relations.

N(P; 
; �) = M(P; 
; �)�
X

(
0;�0)�(
;�)

N(P; 
0; �0)

In this case, we assume a random output-di�erential cipher. Under this assumption, we
can prove the following lemma.

Lemma 2

P 0
i (�

0(i); �0(0)) =X
�0(i�1)

N(P; �0(i); �0(i� 1))ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0(0));

where p = 1=(2n � 1).

Proof. From the assumption of a random output-di�erential cipher,

P (�X(i� 1) = �(i� 1)j�(�X(0)) = � 0(0);�X = �)

= P (�X(i� 1) = �(i� 1)j�(�X(i� 1)) = �0(i� 1);�X = �)

� P (�(�X(i� 1)) = �0(i� 1)j�(�X(0)) = �0(0);�X = �)

= ph(�
0(i))P (�(�X(i� 1)) = �0(i� 1)j�(�X(0)) = �0(0);�X = �)

= ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0(0));

where �0(i� 1) = �(�(i� 1)).
From the de�nition of N,

N(P; �0(i); �0(i� 1)) = #f(�X(i);�X(i� 1)) 2 (GF (2n)m n f0g)2j

�X(i) = P�X(i� 1); �(�X(i)) = �0(i); �(�X(i� 1)) = �0(i� 1)g;

.
Therefore,

P 0
i (�

0(i); �0(0))

=
X

�0(i�1)

N(P; �0(i); �0(i� 1))P (�X(i� 1) = �(i� 1)j�(�X(0)) = �0(0))

=
X

�0(i�1)

N(P; �0(i); �0(i� 1))ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0(0));

This lemma, yields the following procedure.

1) Computing the Number of All Di�erential Paths
For given P , calculate N(P; 
; �) for every 
; � 2 GF (2)m.

M(P; 
; �) can be easily calculated by simple rank calculation as follows.



M(P; 
; �)

= #f(�X;�Y ) 2 GF (2n)2m n f0gjP�X = �Y; F (�
)�X = 0; F (��)�Y = 0g

= 2n�dimf(�X;�Y )2GF (2)2mnf0gjP�X=�Y;F (�
)�X=0;F (��)�Y=0g � 1

= 2

n(2m�rank(

0
@ P E

F (�
) O
O F (��)

1
A))

� 1;

where �
 and �� are the complements of 
 and �, respectively, E is an identity matrix, and
F (�
), F (��), denote the diagonal matrices over GF (2n) whose (i; i) component equals
the i-th signi�cant bit of �
, �� for i = 1; � � � ;m, respectiveley.

N(P; 
; �) can be calculated recursively from the values of M(P; 
; �), using the following
relation.

N(P; 
; �) = M(P; 
; �)�
X

(
0;�0)�(
;�)

N(P; 
0; �0)

2) Initialization
For given �0 2 GF (2)m, calculate P 0

0(�
0(0); �0) for every �0(0) 2 GF (2)m, where

P 0
0(�

0(0); �0) =

�
1 if �0(0) = �0

0 otherwise;

3) Recursive Computation of Truncated Di�erential Probability
Utilizing the values of N(P; 
; �), calculate P 0

i (�
0(i); �0) recursively for every �0(i) 2

GF (2)m.

P 0
i (�

0(i); �0) =X
�0(i�1)

N(P; �0(i); �0(i� 1))ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0)

4) Calculation of (Maximum Average of) Di�erential Probability
Evaluate Pi(�(i); �) by

Pi(�(i); �) = ph(�
0(i))P 0

i (�
0(i); �0)

With this procedure we can compute the truncated di�erential probability of PSN-
structures and (the maximum average of) the di�erential probability of SPN-structures with
16 input words. Furthermore, applying this procedure to the each MixColumn transfor-
mations of Rijndael, allows us to compute the truncated di�erential probability and (the
maximum average of) the di�erential probability. From this computation, the maximum
average of the di�erential probability of 7-layer Rijndael including 4 nonlinear layers, i.e.
4-round Rijndael, is upper-bounded by 1:00 � p16 (= 1:065 � 2�128) and that of 9-layer Ri-
jndael including 5 nonlinear layers, i.e. 5-round Rijndael, is upper-bounded by 0:940 � p16

(= 1:0007 � 2�128) 1. To be secure against di�erential and truncated di�erential cryptanal-
ysis, 2 more layers (1 round) are necessary to avoid the exhaustive search of the the last 2
layers (1 round). This implies a total of 80 S-boxes is needed.

1[12] stated that 5-round di�erential with probability 1:06 � 2�128 was found, but this was typo. The correct
round is 4.



4.3 Truncated Di�erential Probability of E20-like Transformation

Using the values of the di�erential probability of the 2r-layer PSN-structures, we can cal-
culate the truncated di�erential probability of E20-like transformations recursively. In this
calculation, we assume the random output-di�erential Feistel cipher, hence the probabili-
ties for �(�x � �y) = 1 and �(�x � �y) = 0 for two random output-di�erential values
�x;�y;2 GF (2n) n f0g are (2n � 2)=(2n � 1) and 1=(2n � 1), respectively.

The procedure for calculating the truncated di�erential probability of the E20-like trans-
formation is as follows.

1) Computation of Truncated Di�erential Probability of Round Functions
Using the procedure for calculating truncated di�erential probability of 2r-layer PSN-
structure, calculate the truncated di�erential of round functions. Hereafter, we denote
the truncated di�erential probability of the i-th round function for the truncated dif-
ferential (� 0(i); �0(i� 1)) by Q0

r(�
0(i); � 0(i� 1)) = P (�(�X(i)) = � 0(i)j�(�X(i� 1)) =

� 0(i� 1)) for � 0(i); �0(i� 1) 2 GF (2)m

2) Initialization
Let �0(0) = (�L0(0);�R0(0)) 2 GF (2)2m. For given �0 2 GF (2)2m, calculate P 0

0(�
0(0); �0)

for every � 0(0) 2 GF (2)2m, where we assume

P 0
0(�

0(0); �0) =

�
1 if � 0(0) = �0

0 otherwise;

3) Recursive Computation of Truncated Di�erential Probability
Let � 0(i) = (�L0(i);�R0(i)) 2 GF (2)2m, �(i) = (�L(i);�R(i)) 2 GF (2)2m, where
�(�(i)) = � 0(i); �(�L(i)) = �L0(i); �(�R(i)) = �R0(i). Utilizing the values of trun-
cated di�erential probabilities of round functions, calculate P 0

i (�
0(i); �0) recursively for

every � 0(i) 2 GF (2)2m.

P 0
i (�

0(i); �0) =X
�0;

�(L(i� 1)� �) = �R0(i);
�(�) = �0

Q0
i(�

0;�R0(i� 1))P 0
i�1(�

0(i� 1); �0)

4) Calculation of (Maximum Average of) Di�erential Probability
Calculate Pi(�(i); �) by

Pi(�(i); �) = ph(�
0(i))P 0

i (�
0(i); �0);

where �(�) = �0.

4.4 (Maximum Average of) Di�erential and Truncated Di�erential
Probability of E20-like Transformation

In this subsection, we evaluate the maximum average of the di�erential probability of E20-like
transformations with proper initial transformations, where we assume the all linear layers
are same as that of E2.

First we consider E20-like transformations with 2-layer PSN-structures. In this case,
a nonlinear layer with 16 nonlinear functions, or 2-round E20-like transformations with 2-
layer PSN-structures can be adopted as the approximately random output-di�erential initial
transformation. 8-round E20-like transformation with 2-layer PSN-structures with proper
initial transformation has maximum average of di�erential probability of less than 0:940�p16

(= 1:0007 � 2�128). In this case, it is provably secure with 80 nonlinear functions. To o�er
security against di�erential cryptanalysis, 2 more rounds are necessary, which means it needs
a total of 96 nonlinear functions.



If we slightly change linear transformation of SPN-structures, it can be provably secure
with 72 nonlinear functions. To o�er security against di�erential cryptanalysis, 2 more
rounds are necessary, which means it needs a total of 88 nonlinear functions.

Next we consider E20-like transformations with 4-layer PSN-structures. In this case, a
nonlinear layer with 16 nonlinear functions or 2-round E20-like transformations with 2-layer
or 4-layer PSN-structures can be adopted as the proper initial transformation. A 5-round
E20-like transformation with 4-layer PSN-structures with proper initial transformation has
maximum average of di�erential probability lower than 0:940 � p16 (= 1:0007 � 2�128). In
this case, it is provably secure with 96 nonlinear functions. To be secure against di�erential
cryptanalysis, 1 more round is necessary, which means it needs a total of 112 nonlinear
functions to avoid the exhaustive search of the �nal round.

On the other hand, an 8-round E2-like transformation with 3-layer SPN-structures, has
maximum average of di�erential probability lower than 0:940 � p16 (= 1:0007 � 2�128). In
this case, it is provably secure with 128 S-boxes (in this case, approximately random output-
di�erential initial function is not necessary because of the �rst nonlinear layers of the �rst and
second S-boxes). To be secure against di�erential cryptanalysis, 1 more round is necessary,
considering the exhaustive search of the �nal round, which implies it needs a total of 144
S-boxes.

These results means that E20-like transformations with 2-layer PSN-structures is more
secure than 3 or 4 layer.

The block cipher MISTY with 16-input words and 3-rounds has maximum average of
di�erential probability equal to p16max, where pmax is the maximum average of di�erential
probability of nonlinear functions. In this case, it is provably secure with 81 S-boxes. To be
secure against di�erential cryptanalysis, 1 more round is necessary, which implies it needs a
total of 108 S-boxes.

4.5 Impossible Di�erential Cryptanalysis of Rijndael, E20-like Trans-
formation

Impossible di�erential cryptanalysis is a cryptanalysis against block ciphers which utilizes
the pair of input and output-di�erentials whose di�erential probability equals 0 [1].

In the previous procedure, we proposed the procedure which calculates the truncated
di�erential probability of random output-di�erential (Feistel) ciphers. It follows that from
the relations between truncated di�erential probability and di�erential probability we can
also calculate the di�erential probability.

From the values of the di�erential probability, our procedure can calculate the resistance
against impossible di�erential cryptanalysis, by counting the number of di�erentials whose
probabilities equal 0. In the case of E20-like transformations with 2-layer PSN-structures, it
can be proved that 9-rounds o�er security against impossible di�erential cryptanalysis while
8-rounds do not. In the case of E2-like transformations with 3-layer SPN-structures, 8-rounds
o�er security against impossible di�erential cryptanalysis and 7-rounds do not. Comparing
the numbers of nonlinear functions, E20-like transformations with 2-layer PSN-structures is
superior to E2-like transformations with 3-layer SPN-structures, i.e. the basic structure of
block cipher E2.

In the case of Rijndael, it can be proved that 7-layers (including 4 nonlinear layers) o�ers
security against impossible di�erential cryptanalysis while 5-layers (including 3 nonlinear
layers) do not. Comparing the numbers of nonlinear functions, basic structure of Rijndael has
a little higher level of security against impossible cryptanalysis than E20-like transformation
with 2-layer PSN-structures. However, considering the amount of linear layer operations,
E20-like transformations with 2-layer PSN-structures may be superior to the basic structure
of Rijndael, because the linear layer of E20-like transformations consists of only \xor" whereas
that of Rijndael consists of heavier linear transformation over Galois �eld GF(28).



5 Conclusion

This paper examined the truncated di�erential probability and the di�erential probability
of the word-oriented Markov ciphers and random output-di�erential (Feistel) ciphers like
Rijndael and (modi�ed) E2 and clari�ed the relations among the di�erential, truncated
di�erential and the impossible di�erential cryptanalysis of the random output-di�erential
(Feistel) cipher. This random output-di�erential (Feistel) cipher uses a weaker assumption
than the assumption that all S-box di�erentials are equally likely. This is not a strong
assumption because denying this model is equivalent to denying the truncated di�erential
cryptanalysis. We then described a procedure for calculating the truncated di�erential prob-
ability and (maximum average of) the di�erential probability of such ciphers. Using this
procedure, we computed and proved the security of Rijndael, E2 and the E20-like transfor-
mation against di�erential, truncated di�erential and impossible di�erential cryptanalyses
under the assumption of a random output-di�erential (Feistel) cipher. Our evaluation �nds
that Rijndael is the most secure, and the E20-like transformation with 2-layer PSN structure
is a little less secure. However, the linear transformation in E20-like transformations is lighter
than that of Rijndael and can be improved by slightly changing, so the overall speed may
be the highest (may be \not" the highest). Our results implies that SPN-structures (like
Rijndael, Serpent) and Feistel structures with S-boxes composed of 2-layer PSN-structures
(like E2-like transformation with 2-layer PSN-structures) have no disadvantage in terms of
security against di�erential and truncated di�erential cryptanalysis. We can similary evalu-
ate the security of Feistel structures with S-boxes composed of 2-layer SPN-structures (like
Two�sh [18]) against di�erential and truncated di�erential cryptanalysis, though we have
not evaluated Two�sh yet because Two�sh is not composed of just word-wise operations of
�xed size. However, Feistel structures with 2-layer SPN-structures can be proved to be secure
and have no disadvantage in terms of security against di�erential and truncated di�erential
cryptanalysis, if we select the proper linear transformations in their SPN-structures.
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